首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti and some of its alloys are widely used as orthopedic implants. In the present study, Ti–26Nb–5Ag alloys were prepared by mechanical alloying followed by vacuum furnace sintering or spark plasma sintering (SPS). The microstructure and mechanical properties of the Ti–Nb–Ag alloys were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), compressive and micro-hardness tests. The effect of different sintering methods on the microstructure and properties of Ti–Nb–Ag alloy was discussed. The results showed that the titanium alloy sintered by vacuum furnace exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase; whilst the SPS sintered alloy exhibited a microstructure consisting of α, β and a small amount of α″ martensite phase, as well as a nanostructured Ag homogeneously distributed at the boundaries of the β phases. The Ti–Nb–Ag alloy sintered by SPS possessed fracture strength nearly 3 times of the alloy sintered by vacuum furnace.  相似文献   

2.
This paper presents the effects of calcination time and sintering temperature on the properties of CaCu(3)Ti(4)O(12). Electroceramic material of CaCu(3)Ti(4)O(12) was prepared using a modified mechanical alloying technique that covers several processes, which are preparation of raw material, mixing and ball milling for 5 hours, calcination, pellet forming and, sintering. The objective of this modified technique is to enable the calcination and sintering processes to be carried out at a shorter time and lower temperature. The x-ray diffraction (XRD) analysis result shows that a single-phase of CaCu(3)Ti(4)O(12) was completely formed by calcination at 750 degrees C for 12 hours. Meanwhile, the grain size of a sample sintered at 1050 degrees C for 24 hours is extremely large, in the range of 20-50 mum obtained from field emission scanning electron microscopy (FESEM) images. The dielectric constant value of 14,635 was obtained at 10 kHz by impedance (LCR) meter in the sintered sample at 1050 degrees C. However, the dielectric constant value of samples sintered at 900 and 950 degrees C is quite low, in the range of 52-119.  相似文献   

3.
应用旋转圆盘冲击拉伸Hopkinson试验装置和MTS材料试验机,测定了V-5Cr-5Ti合金在不同应变率下的拉伸性能,用SEM观察了断口形貌,获得了10-5s-1~103s-1应变率范围内V-5Cr-5Ti合金的拉伸应力应变关系。结果表明V-5Cr-5Ti合金为应变率敏感材料,流动应力随应变率的增加而增加,且发生韧脆转变现象,其韧脆转变临界应变率在101s-1~102s-1量级。  相似文献   

4.
对真空自耗重熔制备的V-5Cr-5Ti合金进行了室温到1150℃温度范围的拉伸性能测试,获得了不同温度下的拉伸应力应变曲线,用SEM和光学显微镜对断口形貌和金相组织进行了观察,分析了温度对断口形貌和组织的影响。结果表明:V-5Cr-5Ti合金的屈服强度和极限强度总体上随温度升高而降低,但在300℃到700℃之间出现应变失效效应,断裂伸长率随温度升高而降低,断面收缩率随温度升高先增大再而降低,在400℃时断面收缩率最大;温度较低时塑性变形以滑移为主,温度较高时以晶界开裂为主,并伴随有晶界熔化的现象,高温断口表现为韧性断裂为主,具有韧性与脆性共存的现象。  相似文献   

5.
In order to improve the wear resistance of Ti-6Al-4V, different amounts of Si3N4 powder were added into the alloy powder and sintered at 1250℃. Porous titanium alloy with higher wear resistance was successfully fabricated. At sintering temperature, reaction took place and a new hard phase of Ti5Si3 formed. The mechanical properties of the fabricated alloys with different amounts of Si3N4 addition were investigated. The hardness of Ti-6Al-4V, which is the index of wear resistance, was increased by the addition of Si3N4. Amounts of Si3N4 addition have very significant influences on hardness and compressive strength. In present study,titanium alloy with 5 wt pct Si3N4 addition has 62% microhardness and 45% overall bulk hardness increase,respectively. In contrast, it has a 16.4% strength reduction. Wear resistance was evaluated by the weight loss during wear test. A new phase of Ti5Si3 was detected by electron probe microanalyzer (EPMA) and X-ray diffraction (XRD) method. The original Si3N4 decomposed during sintering and transformed into titanium silicide. Porous structure was achieved due to the sintering reaction.  相似文献   

6.
Nanostructured near-β Ti–20Nb–13Zr at % alloy with non-toxic elements and enhanced mechanical properties has been synthesized by spark plasma sintering (SPS) of nanocrystalline powders obtained by mechanical alloying. The consolidated bulk product was characterized by density measurements and Vickers hardness (HV), and X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) combined with energy-dispersive spectroscopy (EDX), and transmission electron microscopy (TEM) for structural details. The temperature during spark plasma sintering was varied between 800 and 1200 °C, while the heating rate and holding time of 100°K/min and 10 min were maintained constant in all the experiments. The effect of SPS temperature on the densification, microstructure, and HV was discussed. The results show that a nearly full density structure was obtained after SPS at 1200 °C. The microstructure of the obtained alloy is a duplex structure with the α-Ti (hcp) region having an average size of 70–140 nm, surrounding the β-Ti (bcc) matrix. The obtained alloy was chemically homogenized with a micro hardness value, HV of 660. The developed nanostructured Ti–20Nb–13Zr alloy is suggested for biomedical use as in implant material in dental and orthopedic applications.  相似文献   

7.
Titanium (Ti) and nickel (Ni) elemental powders were blended by ball milling and the ball milled powders were employed to fabricate TiNi shape memory alloy (SMA) foams by spacer sintering. Effect of ball milling time on phase constitutes of the sintered TiNi alloy foams was studied by X-ray diffraction (XRD) analysis. Scanning electron microscopy (SEM) was used to characterize the porous structure, and compressive tests were carried out to evaluate the mechanical properties of'the foams. Results indicate that porosities of the TiNi alloy foams can be controlled by using the spacer sintering method, and the porosities show a significant effect on the mechanical properties and shape memory effect (SME).  相似文献   

8.
The structural characteristics of biomedical porous materials are crucial for bone tissue to grow into a porous structure and can also influence the fixation and remodeling between the implant and the human tissues. The current study has been investigating the effect of the ball-milling variable of time on the structural characteristics and pore morphology of a biomedical porous Ti–16Sn–4Nb (wt.%) alloy. The alloy was synthesized using high-energy ball milling for different periods of time, and the porous Ti–16Sn–4Nb alloy was fabricated by using a space holder sintering process. The resultant powder particles, bulk, and porous samples were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, chemical analysis, X-ray diffraction analysis (XRD), and the Vickers hardness test. The results indicated that the inner pore surface, pore wall architecture, degree of porosity, pore size and the inter-pore connectivity of the sintered porous alloy are all considerably affected by ball-milling time.  相似文献   

9.
Ti-Al-Al2O3纳米粉体的机械活化-放电等离子烧结   总被引:2,自引:0,他引:2  
王志伟 《材料保护》2005,38(9):54-56
TiAl基合金是很有发展潜力的高温结构材料,为实现快速高效制备此材料,采用新型的机械活化-放电等离子烧结(MA-SPS)制备纳米材料的有效方法,原位制备Ti-Al金属间化合物Ti-47%Al-10%Al2O3(Al为原子分数,Al2O3为质量分数)材料.介绍了放电等离子烧结这种新兴的纳米固体材料制备技术的特点,结合Ti-Al基合金的具体制备工艺,对MA-SPS的特征予以详细分析研究.通过X射线衍射、扫描电镜、透射电镜等分析,经机械球磨活化后,得到晶粒度小于24 nm的纳米单质元素粉体,为后续原位烧结提供合适的烧结原料.其中添加的Al2O3起到细化晶粒、促进纳米化和机械活化、提高出粉率等作用.纳米粉体在合适的参数下经放电等离子烧结后,可得到致密度达98.7%的(TiAl Ti3Al)理想双相组织,其成分的晶粒度小于91 nm,成为纳米固体材料.  相似文献   

10.
The blended elemental method was selected for the manufacture of Ti–13Nb–13Zr alloy by a cold isostatic pressing process and sintering densification under high vacuum. The samples were sintered at the different temperatures from 1250°C to 1450°C with a pressure of 10?3 ~ 10?5 Pa. The decomposition of titanium, niobium, and zirconium hydride powders was discussed by thermal gravimetric analyses and differential scanning calorimetry. The phase composition, microstructure and fracture morphology of Sintered Ti–13Nb–13Zr samples were determined by X-ray diffraction and scanning electron microscopy. The results indicate that the hydrogen can be removed effectively. Chemical analysis shows that the Nb, Zr alloying element and hydrogen contents accord with the standard of the ASTM-1713. The final density of sintered Ti–13Nb–13Zr specimens is 4.99 g cm?3 after sintering at 1450°C for 4 h, representing 99.69% of the theoretical density. The microstructure of sintered Ti–13Nb–13Zr alloys by powder metallurgy is a typical Widmannstätten (α + β).  相似文献   

11.
Nickel alloy matrix/dispersed carbide (VC, NbC, WC) composites were prepared by either flame-spray, liquid phase sintering, or solid state sintering. A commercial Ni-B-Si alloy was mixed with 15% vol. of carbide particles and used to prepare composite coatings by flame-spray, bulk composite materials by solid state sintering (below 1045°C) or liquid phase sintering (above 1050°C). Phase characterization was performed by X-ray diffraction, optical microscopy, scanning electron microscopy and X-ray fluorescence in energy and wavelength dispersive spectroscopy modes. Similar microstructural features were produced by thermal spray and liquid phase sintering: a Ni-rich matrix and a boron-rich intergranular phase. Sintered samples showed higher wear resistance than the coatings obtained by flame spraying. In both cases the wear mechanism is dominated by the plastic flow of the Ni-rich ductile matrix and the fracture of a boron-rich intergranular phase, the latter serving as a retainer. Carbide removal was observed for solid state sintered samples.  相似文献   

12.
Fe-36Ni alloy nanopowder was prepared via electrical explosion of wire in DI water. The nanopowder was reduced in hydrogen at 500 degrees C for 30 min. Spark plasma sintering at 800 and 1000 degrees C for 10 min was used to obtain bulk samples from the hydrogen-reduced nanopowder. The sintered samples were annealed at 500 degrees C for 2 h. X-ray diffraction was used to analyze the phases of the nanopowder and sintered samples. The results showed that the sintered samples were formed in gamma-(Fe-Ni) solid solution. The particles sizes and morphologies of the as-synthesized and hydrogen-reduced nanoparticles were observed via transmission electron microscopy. The morphologies of the as-synthesized nanoparticles had spherical core-shell structures. Core was gamma-(Fe-Ni) and the shell was FeO. The nanoparticles of the as-synthesized and hydrogen reduced samples were found to be nearly spherical in shape, with average diameters of 32 and 70 nm, respectively. The hysteresis loops of the as-synthesized nanopowder, hydrogen reduced nanopowder, and sintered samples revealed ferromagnetic characteristics.  相似文献   

13.
《Advanced Powder Technology》2020,31(8):3408-3419
An ASTM F2581 nanostructured stainless steel was fabricated by two different powder metallurgy routes; Hot Powder Forging (HPF) and Binder Assisted Extrusion (BAE) methods. Their structure and mechanical properties were investigated and compared. In both fabrication methods, the alloy powder was made by using main alloying elements through mechanical alloying, along with the addition of a sintering aid. In the BAE method, a paste was prepared by mixing alloy powders with polymer followed by cold extrusion, polymer removal, and sintering. In the HPF method, the alloy powders were hot forged under high pressure. The structure and the size of the austenite crystallite of the samples were investigated by scanning electron microscopy (SEM), FE-SEM, x-ray diffraction (XRD) and transmission electron microscopy (TEM). It was determined that the samples prepared by the HPF method are generally denser than those made via BAE. The porosities are smaller and almost uniform in size and morphology in the HPF method. Furthermore, microhardness and tensile tests were performed on the samples. The results show that the ductility of BAE samples is higher than the HPF samples. The fracture surface of the BAE sample has deeper dimples, indicating higher ductility for BAE samples. On the other hand, both the hardness and strength of HPF samples are higher than those of the BAE samples. The results show that both methods produced specimens with considerably higher strength and hardness than conventional 316L stainless steel.  相似文献   

14.
利用磁控溅射的方法在Ti_3Al合金上溅射Ti-48Al-8Cr-2Ag (原子分数/%)涂层,研究涂层对Ti_3Al合金熔盐热腐蚀和电化学腐蚀行为的影响.同时通过TEM,SEM,EDX,电化学工作站对合金的腐蚀进行研究,并对腐蚀机理进行探讨.结果表明:在熔盐热腐蚀中,涂层对基体具有很好的防护作用,这主要是因为Ti_3Al合金表面发生了大面积的脱落,而涂层试样表面腐蚀膜结合牢固.经过电化学腐蚀研究,涂层试样表面发生明显的分级钝化现象,表明涂层在Na2SO4+K2SO4溶液中具有很好的钝化性能,显示了很好的抗电化学腐蚀性能.  相似文献   

15.
An atomized iron powder used in conventional powder metallurgy, mixed with 4 wt.% Cu powders was injection molded with carbonyl iron powder and a sintering aid. The use of atomized iron powder can reduce cost, but decreases packing density and sintering rate. To improve the densification of atomized powders, 20-40 wt.% carbonyl iron powder was added for increasing packing density and promoting sintering. The sintered alloy was characterized by the bulk density, mechanical properties, and scanning electron microscope observations. The results of sintering for the samples added with 30 wt.% carbonyl powder show that the relative bulk density, hardness, tensile strength and elongation are up to 83.87%. HRF 92.2, 315.5 MPa and 4%, respectively. The proportion of carbonyl iron powders and sintering temperature were found to influence the relative bulk density and the mechanical properties of the specimens significantly.  相似文献   

16.
Abstract

Nd:YAG ceramics with CaF2 and tetraethoxysilane (TEOS) as sintering additives were fabricated by vacuum sintering at 1750°C for 5 h and the microstructures were characterised using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy result shows that the sintered bulk doped with TEOS contains many pores in the grains. The bulk doped with CaF2 displays uniform microstructure. The average size of the grains is 10 mm and few pores can be detected in this sintered bulk. The maximum transmittance of the sintered Nd:YAG ceramics were 44% doped with CaF2 and 14% doped with TEOS.  相似文献   

17.
研究所用钒合金试样为V-6W-2.5Ti及V-4Cr-4Ti合金,并且通过气相渗氢,改变合金的氢含量。测试了合金在不同拉伸应变速率下的强度和恒载荷作用下合金的变形及试验前后合金含氢量的变化。研究结果表明,合金的氢致硬化效果明显,强度随拉伸应变速率的升高而增加。发现合金在拉应力和室温条件下,就存在氢释放行为及在高应力作用下的蠕变行为,并因此影响合金的力学性能和变形特征。  相似文献   

18.
In this research, the influence of process parameters such as sintering temperature and current during alloying and densification of silicon-germanium (Si80-Ge20) powder mixture using spark plasma sintering (SPS) was reported. Si80-Ge20 powder mixture was consolidated at the temperature range 900–1200 °C with 40 MPa pressure for 5 min. soaking. X-ray diffraction (XRD) study was made on sintered compacts to confirm the Si(Ge) alloy formation. Scanning electron microscope (SEM) was used to understand the morphology, particle size and distribution of un-milled and milled Si80-Ge20 powder mixture. Transmission electron microscope (TEM) study was made on milled Si80-Ge20 powder mixture and bulk SiGe alloy to confirm the nano-crystallinity and alloy formation. Fracture toughness of sintered bulk SiGe alloy was determined from Palmqvist cracks geometry model using Vickers hardness testing. It is understood that, during spark plasma sintering nano-structured Si80-Ge20 powder simultaneously increases the densification and reaction kinetics. It helps to achieve homogenous nanostructured SiGe alloy of near theoretical density. The superior hardness and benchmarked fracture toughness (KIC) values of 630 VHN and 2.19 MPa√m was achieved for SiGe alloy sintered at 1200 °C, respectively.  相似文献   

19.
Titanium (Ti) and its alloys continue to be utilized extensively for skeletal repair and dental implants. Most metallic implant materials including pure Ti and Ti alloys used today are in their solid forms and are often much stiffer than human bone. However, the elastic modulus of Ti and Ti alloys can be reduced through the introduction of a porous structure, which may also provide new bone tissue integration and vascularization abilities. In the present study, porous Ti–7.5Mo alloy scaffolds made from ball-milled alloy particles and sintered at 1100 °C for 10, 15 and 20 h respectively were successfully prepared through a space-holder sintering method. In the sintered Ti–7.5Mo, no obvious diffraction peaks of elemental Mo remained after the sintering, and a duplex α + β microstructure was confirmed from the XRD pattern. The samples made from BM15 (the alloy particles ball-milled for 15 h) had higher relative density, compressive strength and elastic modulus performance than those from BM3 and BM30 (the alloy particles ball-milled for 3 and 30 h, respectively) when they were sintered under the same conditions. Moreover, the longer sintering time lead to the higher relative density and the greater compressive strength and modulus of the sample. In this work, the strength and modulus of the sintered porous Ti–7.5Mo conforms to the basic mechanical property requirement of cancellous bones.  相似文献   

20.
Nanostructured metal matrix composites (NMMCs) in large-dimension billets were fabricated by hot isostatic pressing (HIPing) of cryomilled powders consisting of AA2024 alloy reinforced by 25 wt.% SiC particles. Microstructure of the bulk nanostructured composites and cryomilled powders was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In addition, mechanical properties of the bulk nanocomposites were also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号