首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reduced- and low-fat cheeses are desired based on composition but often fall short on overall quality. One of the major problems with fat reduction in cheese is the development of a firm texture that does not break down during mastication, unlike that observed in full-fat cheeses. The objective of this investigation was to determine how the amount of fat affects the structure of Cheddar cheese from initial formation (2 wk) through 24 wk of aging. Cheeses were made with target fat contents of 3 to 33% (wt/wt) and moisture to protein ratios of 1.5:1. This allowed for comparisons based on relative amounts of fat and protein gel phases. Cheese microstructure was determined by confocal scanning laser microscopy combined with quantitative image analysis. Rheological analysis was used to determine changes in mechanical properties. Increasing fat content caused an increase in size of fat globules and a higher percentage of nonspherical globules. However, no changes in fat globules were observed with aging. Cheese rigidity (storage modulus) increased with fat content at 10°C, but differences attributable to fat were not apparent at 25°C. This was attributable to the storage modulus of fat approaching that of the protein gel; therefore, the amount of fat or gel phase did not have an effect on the cheese storage modulus. The rigidity of cheese decreased with storage and, because changes in the fat phase were not detected, it appeared to be attributable to changes in the gel network. It appeared that the diminished textural quality in low-fat Cheddar cheese is attributed to changes in the breakdown pattern during chewing, as altered by fat disrupting the cheese network.  相似文献   

2.
In a previous study, exopolysaccharide (EPS)-producing cultures improved textural and functional properties of reduced fat Cheddar cheese. Because base cheese has an impact on the characteristics of process cheese, we hypothesized that the use of EPS-producing cultures in making base reduced fat Cheddar cheese (BRFCC) would allow utilization of more young cheeses in making reduced fat process cheese. The objective of this study was to evaluate characteristics of reduced fat process cheese made from young BRFCC containing EPS as compared with those in cheese made from a 50/50 blend of young and aged EPS-negative cheeses. Reduced fat process cheeses were manufactured using young (2 d) or 1-mo-old EPS-positive or negative BRFCC. Moisture and fat of reduced fat process cheese were standardized to 49 and 21%, respectively. Enzyme modified cheese was incorporated to provide flavor of aged cheese. Exopolysaccharide-positive reduced fat process cheese was softer, less chewy and gummy, and exhibited lower viscoelastic moduli than the EPS-negative cheeses. The hardness, chewiness, and viscoelastic moduli were lower in reduced fat process cheeses made from 1-mo-old BRFCC than in the corresponding cheeses made from 2-d-old BRFCC. This could be because of more extensive proteolysis and lower pH in the former cheeses. Sensory scores for texture of EPS-positive reduced fat process cheeses were higher than those of the EPS-negative cheeses. Panelists did not detect differences in flavor between cheeses made with enzyme modified cheese and aged cheese. No correlations were found between the physical and melting properties of base cheese and process cheese.  相似文献   

3.
Anhydrous milk fat was emulsified with alpha s1-CN (casein), alpha s2-CN, beta-CN, kappa-CN, alpha-lactalbumin, beta-lactoglobulin, Tween 80, or phosphatidylcholine to produce a 30% fat cream in a 0.1 M imidazole pH 7 buffer. The creams were mixed with skim milk to yield a fat content of 3.4% and the viscoelastic properties of the recombined milks clotted with chymosin were measured. Recombined milk containing globules coated with the more amphipathic and phosphorylated alpha s2-CN and beta-CN clotted faster but gel firmness increased more slowly and weaker gels were formed. Gel firmness increased more rapidly for milks containing globules coated with of alpha s1-CN and kappa-CN that possess more uniformly distributed hydrophobic domains.  相似文献   

4.
Mozzarella cheese was manufactured from milk containing either a low (olein) or a high (stearin) melting point fraction of milk fat or anhydrous milk fat. The fat was dispersed into skim milk by homogenization at 2.6 MPa before being manufactured into cheese. The melting point of the milk fat did not affect the size or shape of the fat globules, nor was there any effect of homogenization on the polymorphic state of the milk fat. There were no changes in milk fat globule size and shape concomitant with the amount of free oil formed. The polymorphic state of the milk fat did affect the amount of free oil formed and the apparent viscosity of the cheese. The lower melting point fraction yielded a larger amount of free oil. The higher melting point fraction yielded a higher viscosity of melted cheese at 60 degrees C. Mozzarella cheese was also manufactured from homogenized milk, nonhomogenized milk, and a 1:1 ratio of the two, without altering the milk fat composition. Increasing the proportion of homogenized milk yielded a lower free oil content and higher viscosity of the cheese.  相似文献   

5.
This study investigated the effects of aging and fat content on the texture of Cheddar cheese, both mechanical and sensory aspects, over a 9-mo aging period. Cheeses of 6, 16, and 33% fat were tested at 0.5, 3, 6, and 9 mo of aging. Cheeses were evaluated by a trained sensory panel using an established texture lexicon as well as instrumental methods, which were used to probe cheese structure. Sensory analysis showed that low-fat cheeses were differentiated from full-fat cheeses by being more springy and firm and this difference widened as the cheeses aged. In addition, full-fat cheeses broke down more during chewing than the lower fat cheeses and the degree of breakdown increased with aging. Mechanical properties were divided by magnitude of deformation during the test and separated into 3 ranges: the linear viscoelastic region, the nonlinear region, and fracture point. These regions represent a stress/strain response from low to high magnitude, respectively. Strong relationships between sensory terms and rheological properties determined in the linear (maximum compliance) and nonlinear (critical stress and strain and a nonlinear shape factor) regions were revealed. Some correlations were seen with fracture values, but these were not as high as terms related to the nonlinear region of the cheeses. The correlations pointed to strain-weakening behavior being the critical mechanical property. This was associated with higher fat content cheeses breaking down more as strain increased up to fracture. Increased strain weakening associated with an increase in fat content was attributed to fat producing weak points in the protein network, which became initiation sites for fracture within the structure. This suggests that fat replacers need to serve this functional role.  相似文献   

6.
Influence of different levels (0, 0.15, 0.35 or 0.50%) of microparticulated whey protein (MWP) on yield and quality of low‐fat (~7.3 g/100 g) Cheddar cheese was investigated. MWP improved cheese yield due to the water‐binding ability of denatured whey protein. MWP addition decreased meltability but improved the textural properties beneficial for shredding and slicing, by decreasing sensory firmness. The results emphasise the role of MWP as an inert filler within cheese matrix, in improving cheese yield and creating a softer texture without compromising the sensory or overall quality of cheese, even with moisture increases in 0.35 or 0.50% MWP cheeses.  相似文献   

7.
Although several studies have aimed to identify mare's milk proteins, only the major whey proteins and some caseins have yet been characterized. Incomplete sequencing of the equine genome and the difficulty of recovering highly hydrophobic proteins mean that little is known to date about the proteins associated with milk fat globules, which have been shown to play an important role in newborns' defense mechanisms. The fat fraction, in particular the distribution of unsaturated fatty acids, has been more extensively studied, but complex lipids are only partially elucidated. This study reports a 2-DE approach combined with a powerful method for de novo protein sequencing, and quali-quantitative data on complex lipid composition determined by high performance TLC (HPTLC) and GC. The presence in mare's milk of long-chain highly unsaturated fatty acids, and the evidence of close similarity between equine and human milk fat globule membrane proteins, support the use of mare's milk for human nutrition.  相似文献   

8.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels.  相似文献   

9.
目的研究脂肪替代物对部分脱脂Mozzarella干酪的流变学特性及微观结构的影响。方法通过测定不同脂肪替代物(菊粉、麦芽糖醇、WPC-80、大豆卵磷脂)制成的部分脱脂干酪的基本组分、流变学特性、粘弹性模量变化、微观结构,研究不同脂肪替代物对干酪的影响。结果菊粉、WPC-80、大豆卵磷脂均能提高部分脱脂干酪的水分含量,加入脂肪替代物的干酪的pH明显低于对照组部分脱脂干酪的pH。WPC-80 G菊粉G大豆卵磷脂G麦芽糖醇G对照G,说明加入脂肪替代物能显著改善部分脱脂干酪的黏弹流变学特性。结论麦芽糖醇作为脂肪替代物替代脂肪的效果较好,能提高蛋白分子间疏水作用,加入麦芽糖醇的部分脱脂干酪的黏弹性与对照组最为接近。  相似文献   

10.
Scientific studies indicate that the intake of dietary fat and saturated fats in the modern Western diet is excessive and contributes adversely to health, lifestyle, and longevity. In response, manufacturers of cheese and processed cheese products (PCP) are pursuing the development of products with reduced fat contents. The present study investigated the effect of altering the fat level (13.8, 18.2, 22.7, 27.9, and 32.5 g/100 g) in PCP on their chemical and physical properties. The PCP were formulated in triplicate to different fat levels using Cheddar cheese, skim milk cheese, anhydrous milk fat, emulsifying salt (ES), NaCl, and water. The formulations were designed to give fixed moisture (~53 g/100 g) and ES:protein ratio (0.105). The resultant PCP, and their water-soluble extracts (WSE), prepared from a macerated blend of PCP and water at a weight ratio of 1:2, were analyzed at 4 d. Reducing the fat content significantly increased the firmness of the unheated PCP and reduced the flowability and maximum loss tangent (fluidity) of the melted PCP. These changes coincided with increases in the levels of total protein, water-soluble protein, water-insoluble protein, and water-soluble Ca, and a decrease in the molar ratio of water-soluble Ca to soluble P. However, both water-soluble Ca and water-soluble protein decreased when expressed as percentages of total protein and total Ca, respectively, in the PCP. The high level of protein was a major factor contributing to the deterioration in physical properties as the fat content of PCP was reduced. Diluting the protein content or reducing the potential of the protein to aggregate, and thereby form structures that contribute to rigidity, may provide a means for improving quality of reduced-fat PCP by using natural cheese with lower intact casein content and lower calcium:casein ratio, for example, or by decreasing the ratio of sodium phosphate to sodium citrate-based ES.  相似文献   

11.
Fragments originating from the milk fat globule membrane (MFGM), which is rich in polar lipids and membrane-specific proteins, are gaining interest for their functional and nutritional properties. Acid buttermilk cheese whey was used as a source for MFGM purification, because its MFGM content is more than 5 times higher than that of standard rennet whey. Because polar lipids are the main constituent of the MFGM and only occur in membranous structures, the polar lipid content was taken as a parameter for the total MFGM fragment content. The process of thermocalcic aggregation was evaluated on its recovery of MFGM fragments in the pellet. This method, originally intended for whey clarification and defatting, is a combination of calcium addition, a pH increase, and a thermal treatment. The influence of pH (6.5 to 8), temperature (40 to 70°C), and calcium concentration (0.1 to 0.24 g/100 g) on the pellet mass and dry matter (DM) content and on recovery of protein and polar lipids (and thus indirectly on MFGM fragments) was investigated by means of a response surface Box-Behnken orthogonal design. Reduced quadratic models were fit to the experimental data and were found to be highly significant. No outliers were observed. The recovery of MFGM fragments was found to be highly dependent on the pH, and less dependent on temperature and calcium addition. Next to MFGM proteins, whey proteins were also found to be involved in the formation of aggregates. Optimal conditions were found at 55°C, pH 7.7, and 0.205 g of calcium/L of whey. Under these conditions, 91.0% of the whey polar lipids were recovered in a firm and compact pellet of only 7.86% of the original whey mass, with a polar lipid concentration of 8.34% on pellet DM. Washing with water and centrifugation of the pellet was successful because after one washing step, virtually all sugars were removed, whereas 75.9% of the whey polar lipids could still be recovered. As such, the polar lipid content of the washed pellet increased to 10.70% on a DM basis. However, a second washing step resulted in serious losses of MFGM material.  相似文献   

12.
The proteins and polar lipids present in milk fat globule membrane (MFGM) fragments are gaining attention for their technological and nutritional properties. These MFGM fragments are preferentially enriched in side streams of the dairy industry, like butter serum, buttermilk, and whey. The objective of this study was to recover MFGM fragments from whey by tangential filtration techniques. Acid buttermilk cheese whey was chosen as a source for purification by tangential membrane filtration because it is relatively rich in MFGM-fragments and because casein micelles are absent. Polyethersulfone and cellulose acetate membranes of different pore sizes were evaluated on polar lipid and MFGM-protein retention upon filtration at 40°C. All fractions were analyzed for dry matter, ash, lipids, proteins, reducing sugars, polar lipid content by HPLC, and for the presence of MFGM proteins by sodium dodecyl sulfate-PAGE. A fouling coefficient was calculated. It was found that a thermocalcic aggregation whey pretreatment was very effective in the clarification of the whey, but resulted in low permeate fluxes and high retention of ash and whey proteins. By means of an experimental design, the influence of pH and temperature on the fouling and the retention of polar lipids (and thus MFGM fragments), proteins, and total lipids upon microfiltration with 0.15 μM cellulose acetate membrane was investigated. All models were highly significant, and no outliers were observed. By increasing the pH from 4.6 to 7.5, polar lipid retention at 50°C increased from 64 to 98%, whereas fouling of the filtration membrane was minimized. A 3-step diafiltration of acid whey under these conditions resulted in a polar lipid concentration of 6.79 g/100 g of dry matter. As such, this study shows that tangential filtration techniques are suited for the purification of MFGM fragments.  相似文献   

13.
Lipids in almonds are present as oil bodies in the nut. These oil bodies are surrounded by a membrane of proteins and phospholipids and are a delivery vehicle of energy in the form of triglycerides, similarly to the more studied bovine milk fat globule membrane. Chemical, physical and microscopic analyses revealed major differences in the composition and structure of almond oil bodies and bovine milk fat globules. The lipids of both natural emulsions differed in degree of unsaturation, chain length, and class. The almond oil body membrane does not contain any cholesterol or sphingomyelin unlike the bovine milk fat globule membrane. Therefore, the phospholipid distribution at the surface of the oil bodies did not present any liquid-ordered domains. The membranes, a monolayer around almond oil bodies and a trilayer around bovine fat globules, may affect the stability of the lipid droplets in a food matrix and the way the lipids are digested.  相似文献   

14.
凝乳酶对低脂干酪微观结构和功能特性的影响   总被引:1,自引:0,他引:1  
研究了低脂干酪成熟过程中蛋白质水解程度对干酪本身的微观结构和功能特性的影响.以低脂乳为原料,添加不同剂量的凝乳酶制备低脂干酪,测定干酪不同成熟期的熔度及质量分数为12%的TCA-SN并观察干酪的微观结构.结果表明,在低脂干酪中添加双倍的凝乳酶时可以减少干酪的硬度、增加熔度和改善其感官状态;当添加3倍凝乳酶时将会导致产品比添加正常凝乳酶量时更有胶弹性.因此,添加双倍凝乳酶时能有效改善低脂干酪的质构、功能特性及感官状态.  相似文献   

15.
16.
We used in-line holography to create images of individual milk fat globules in diluted samples of milk. Analyzing these images with the exact Lorenz-Mie light scattering theory then yields the droplets’ radii with nanometer resolution and their refractive indexes to within one part in a thousand. This procedure rapidly and directly characterizes both the quantity and quality of fat in milk.  相似文献   

17.
A batch of full-fat (23% target fat) and 3 batches of low-fat (6% target fat) Iranian white cheese with different rennet concentrations (1-, 2-, and 3-fold the normal usage) were produced to study the effect of fat content reduction and promoted proteolysis on the textural and functional properties of the product. Cheese samples were analyzed with respect to their rheological parameters (uniaxial compression and small amplitude oscillatory shear), meltability, microstructure, and sensory characteristics. Reduction of fat content from 23 to 6% had adverse effects on the texture, functionality, cheese-making yield, and sensory characteristics of Iranian white cheese. Fat reduction increased the instrumental hardness parameters (storage modulus, stress at fracture, and Young's modulus of elasticity), decreased the cheese meltability and yield, and made the microstructure more compact. Doubling the rennet concentration reduced values of instrumental hardness parameters, increased the meltability, and improved the sensory impression of texture. Although increasing the rennet concentration to 2-fold the normal usage resembled somewhat the low-fat cheese to its full-fat counterpart, it appeared to cause more reduction in yield. Increasing the rennet concentration 3-fold the normal usage produced a product slightly more elastic than the low-fat cheese with normal concentration of rennet. Increasing the rennet concentration to 2-fold the normal usage was useful for improving the textural, functional, and sensory properties of low-fat Iranian white cheese.  相似文献   

18.
Cheeses with 60% reduced fat were prepared with three fat mimetics and viscoelasticity was studied. Storage and loss moduli of low-fat cheeses made with a carbohydrate-based fat mimetic were greater (p < 0.05) than those of low-fat cheeses made with two protein-based fat mimetics or low-fat control cheese, but smaller (p < 0.05) than the storage and loss moduli of full-fat cheese. A six-element Kelvin model properly predicted the creep compliance for the full-fat cheese and the low-fat cheeses made with or without fat mimetics. Low-fat cheese made with a carbohydrate-based fat mimetic had a network structure more similar to full-fat cheese than the low-fat control or samples made with protein-based fat mimetics.  相似文献   

19.
20.
The effect of different concentrations of gum tragacanth on the textural characteristics of low-fat Iranian White cheese was studied during ripening. A batch of full-fat and 5 batches of low-fat Iranian White cheeses with different gum tragacanth concentrations (without gum or with 0.25, 0.5, 0.75, or 1 g of gum/kg of milk) were produced to study the effects of fat content reduction and gum concentration on the textural and functional properties of the product during ripening. Cheese samples were analyzed with respect to chemical, color, and sensory characteristics, rheological parameters (uniaxial compression and small-amplitude oscillatory shear), and microstructure. Reducing the fat content had an adverse effect on cheese yield, sensory characteristics, and the texture of Iranian White cheese, and it increased the instrumental hardness parameters (i.e., fracture stress, elastic modulus, storage modulus, and complex modulus). However, increasing the gum tragacanth concentration reduced the values of instrumental hardness parameters and increased the whiteness of cheese. Although when the gum concentration was increased, the low-fat cheese somewhat resembled its full-fat counterpart, the interaction of the gum concentration with ripening time caused visible undesirable effects on cheese characteristics by the sixth week of ripening. Cheeses with a high gum tragacanth concentration became very soft and their solid texture declined somewhat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号