首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 718 毫秒
1.
PTFE/Al2O3纳米复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
利用MM—200型摩擦磨损试验机研究了PTFE/Al2O3纳米复合材料的摩擦磨损性能,并采用扫描电子显微镜观察、分析了试样磨屑形状及磨损机理。结果表明,经表面处理的纳米Al2O3能明显提高PTFE的耐磨损性并改变其磨屑形成机理;当表面处理纳米Al2O3含量为3%时,PTFE纳米复合材料的磨损量最小,但在试验范围内,表面处理纳米Al2O3含量变化对PTFE纳米复合材料的耐磨损性影响不大,而PTFE纳米复合材料的摩擦系数则随表面处理纳米Al2O3含量增加而略有增大,导致PTFE磨损的机理主要是粘着磨损。  相似文献   

2.
通过冷压烧结成型工艺制备了纳米二氧化硅(SiO_2)填充改性聚四氟乙烯(PTFE)复合材料,探究了不同添加比例的纳米SiO_2/PTFE复合材料在不同转速下摩擦磨损情况。采用三维视频显微镜观察了样品的表面磨痕深度,借助扫描电镜观察摩擦表面形貌并分析磨损机理。结果表明,填充纳米SiO_2后的PTFE复合材料其摩擦因数虽有一定程度的升高,但其体积磨损率却大幅降低。且当纳米SiO_2填充质量分数为5%时,复合材料的体积磨损率降到最低,并在转速为80 r/min时较纯PTFE降低了89.5%。观察分析微观形貌发现,随着纳米SiO_2含量的增大,复合材料的磨损机理逐渐由犁耕磨损和黏着磨损向磨粒磨损转变,且当纳米SiO_2填充含量为10%时,出现轻微的疲劳磨损。  相似文献   

3.
李国一  叶素娟 《塑料工业》2012,40(11):78-81
考察了不同含量的纳米Al2O3对青铜粉/聚四氟乙烯(PTFE)摩擦磨损性能和物理机械性能的影响,采用扫描电镜(SEM)观察了复合材料的磨损表面,并分析和探讨了磨损机理。研究发现,纳米Al2O3和青铜粉复合填充可以大大提高PTFE复合材料的耐磨性,表现出良好的协同作用,但会降低复合材料的拉伸强度和断裂伸长率。添加5%纳米Al2O3后,40%青铜粉/PTFE复合材料的磨痕宽度从12.0 mm降低为5.0 mm,体积磨损率从171.40×10-6mm3/(N.m)降低为12.11×10-6 mm3/(N.m)。  相似文献   

4.
合成了含氟分子链接枝改性纳米氧化铝(Al2O3),用接枝改性纳米Al2O3填充聚四氟乙烯(PTFE),采用模压成型法制备了不同接枝改性纳米Al2O3含量的PTFE/纳米Al2O3复合材料;在摩擦磨损试验机上考察了接枝改性纳米Al2O3对PTFE/纳米Al2O3复合材料摩擦学性能的影响,利用扫描电子显微镜对复合材料的磨损表面进行了微观分析。结果表明,接枝改性纳米Al2O3填充PTFE复合材料在保持PTFE低摩擦系数的同时,提高了其耐磨损性能。  相似文献   

5.
利用QG-700高温气氛摩擦磨损实验机研究了纯超高摩尔质量聚乙烯(UHMWPE)和质量分数为5%的纳米Al2O3/UHMWPE复合材料在不同温度下的摩擦磨损性能;并利用扫描电子显微镜观察了磨损表面形貌。结果表明:在实验温度条件下,5%纳米Al2O3/UHMWPE复合材料的耐磨性好于纯UHMWPE。纯UHMWPE的磨损机制主要是黏着磨损和疲劳磨损,而5%纳米Al2O3/UHMWPE复合材料的磨损机制转变为黏着磨损和磨粒磨损。  相似文献   

6.
表面处理纳米Al2O3填充PTFE复合材料的磨粒磨损性能   总被引:1,自引:0,他引:1  
利用自制销-盘式磨粒磨损试验机,测定聚四氟乙烯(PTFE)及其表面处理与未处理纳米氧化铝(Al2O3)填充聚四氟乙烯复合材料试件在干摩擦滑动条件下的磨粒磨损质量损失。考察了载荷、磨粒、转速等参数的变化对试件摩擦学性能的影响。采用扫描电子显微镜观察、分析试件磨损表面形貌及磨损机理。结果表明,纳米Al2O3可以提高PTFE耐磨性。表面处理纳米Al2O3在PTFE中能较均匀分散,其耐磨性比相同含量但未经表面处理的纳米Al2O3填充PTFE高。导致PTFE复合材料磨粒磨损的重要机理是犁切破坏。  相似文献   

7.
表面处理Al2O3增强PTFE基复合材料的摩擦学性能   总被引:2,自引:1,他引:2  
利用MM-200型摩擦磨损试验机考察了表面处理与未处理纳米Al2O3对填充聚四氟乙烯(PTFE)复合材料摩擦学性能的影响,采用扫描电子显微镜观察试样混合效果和磨损表面形貌并分析其磨损机理。结果表明:填充PTFE摩擦系数比PTFE略有增加。纳米Al2O3可以提高PTFE耐磨性,表面处理纳米Al2O3在PTFE中能较均匀分散,其耐磨性比相同含量但未经表面处理的纳米Al2O3填充PTFE高一倍。导致PTFE磨损的重要机理是切削和粘着磨损。  相似文献   

8.
以聚酰胺6(PA6)为电梯靴衬材料,制备了PA6/纳米Al2O3复合材料。在电梯工况下研究纳米Al2O3含量对复合材料磨损性能的影响,并探讨纳米Al2O3对PA6的作用机理。结果表明,在电梯工况下随着试验时间的延长,PA6/纳米Al2O3复合材料摩擦因数经历了先急剧增大后迅速减小再平缓的变化过程;随着纳米Al2O3含量的增加,复合材料的摩擦因数和磨损量表现为先减小后增加的变化;当纳米Al2O3含量为4%时,其减摩耐磨效果最为显著,对应的摩擦因数和磨损量分别比纯PA6降低23.5%和84.3%;复合材料的磨损行为与纳米Al2O3含量有关,纯PA6磨损形式主要是磨粒磨损和黏着磨损并存,随着纳米Al2O3含量的增加,复合材料经历了磨粒磨损先增强后减弱和黏着磨损先减弱后增强的变化过程。  相似文献   

9.
采用模压成型的方法制备了纳米氮化硅(Si3N4)与二硫化钼(MoS2)、玻璃纤维(GF)、纳米三氧化二铝(Al2O3)混合填充的聚四氟乙烯(PTFE)复合材料,研究了PTFE复合材料的力学性能和摩擦学性能。采用扫描电子显微镜(SEM)观察分析了拉伸断面形貌及增强机理。结果表明:Si3N4及其混杂填料均使复合材料表面硬度增大;PTFE/Si3N4/Al2O3纳米复合材料具有较好的拉伸性能;混杂填料均可以显著改善PTFE复合材料的耐磨性能,其中5 %的Si3N4与10 %的Al2O3混杂填充复合材料的耐磨性最好,填料对复合材料摩擦因数影响不大。SEM分析表明,纳米Si3N4、Al2O3与PTFE基体界面结合较好。  相似文献   

10.
采用模压成型法制备纳米Si3N4或SiC与纳米Al2O3混合填充的聚四氟乙烯(PTFE)复合材料,研究不同质量分数的纳米Si3N4或SiC与5%纳米Al2O3混合填充对PTFE复合材料力学与耐磨性能的影响,利用扫描电子显微镜(SEM)观察复合材料拉伸断面的微观结构,探讨其增强机理.结果表明:纳米SiN4或SiC与Al2O3混合填料均能使PTFE复合材料的硬度和耐磨性提高,且填充Si3N4/Al2O3的PTFE复合材料的硬度、拉伸性能、冲击强度和耐磨性均优于填充SiC/Al2O3的,其中5%Si3N4与Al2O3混合填充的PTFE复合材料有较好的综合性能.微观分析表明:Si3N4/Al2O3在PTFE基体中分散性较好,说明Si3N4与Al2O3具有较好的协同作用.  相似文献   

11.
以粉状SiC纤维、Al2O3纤维、高强碳纤维(CF)、中强CF、低强CF增强聚四氟乙烯(PTFE),研究了纤维种类、含量对PTFE力学和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对试样拉伸断口形貌进行观察,探讨了复合材料的增强机理.结果表明,粉状SiC纤维、Al2O3纤维及CF均能提高PTFE的硬度和耐磨性;高强CF、中强CF及Al2O3纤维能提高其拉伸强度;5种纤维均使PTFE冲击强度下降,但咖/高强CF复合材料的冲击强度降幅较小;SEM分析表明,SiC纤维与PTFE的界面结合强度较低,界面出现了许多空隙,中强CF、高强CF、Al2O3纤维与PT-FE界面结合较好,拉伸断口处多数纤维与基体牢固粘附而难以拔出,PTFE/低强CF复合材料呈典型的脆性断裂特征.  相似文献   

12.
(Ni-P)-纳米Al2O3-PTFE化学复合镀层的性能研究   总被引:1,自引:1,他引:0  
在化学镀Ni-P合金镀液中添加纳米Al2O3及PTFE获得(Ni-P)-Al2O3-PTFE复合镀层.研究了纳米Al2O3及PTFE对镀层硬度、磨损及减摩性能的影响.结果表明:纳米Al2O3及PTFE的加入能提高Ni-P合金镀层的硬度、耐磨及减摩性.  相似文献   

13.
纳米TiO2/PTFE复合材料的干摩擦磨损性能   总被引:2,自引:0,他引:2  
史丽萍 《塑料工业》2005,33(1):49-51
利用磨损试验机、扫描电子显微镜等方法研究了表面处理与未处理纳米TiO2(质量分数为6%)填充聚四氟乙烯(PTFE)复合材料的干摩擦性能。结果表明,纳米TiO2能明显提高:PTFE耐磨性并改变其磨屑形成机理。表面处理纳米TiO2在PTFE中能较均匀分散。纳米TiO2填充PTFE复合材料的摩擦系数比PTFE稍大,纳米TiO2表面处理与否对PTFE复合材料的摩擦系数影响不大,但表面处理纳米TiO2填充聚四氟乙烯耐磨性比PTFE有显著提高,表面处理与表面未处理纳米TiO2填充PTFE复合材料的耐磨性比PTFE可分别提高7倍和3倍左右。导致PTFE磨损的重要机理是粘着磨损。  相似文献   

14.
Polyoxymethylene (POM) composites modified with nanoparticles, polytetrafluoroethylene (PTFE) and MoS2 were prepared by a twin‐screw extruder. The effect of nanoparticles and solid lubricant PTFE/MoS2 on mechanical and tribological properties of the composites were studied. Tribological tests were conducted on an Amsler friction and wear tester using a block‐on‐ring arrangement under dry sliding and oil lubricated conditions, respectively. The results showed that generally speaking POM nanocomposites had better stiffness and tribological properties than corresponding POM composites attributed to the high surface energy of nanoparticles, except that the tensile strength of three composites and dry‐sliding tribological properties of POM/3%Al2O3 nanocomposite decreased due to the agglomeration of nanoparticles. Tribological properties differed under dry sliding and oil lubricated conditions. The friction coefficient and wear volume of POM nanocomposites under oil lubricated condition decreased significantly. The increased deformation resistance supported the increased wear resistance of POM nanocomposites. POM/PTFE/MoS2/3%Al2O3 nanocomposite had the best mechanical and tribological properties of all three composites, which was attributed to the synergistic effect of nanoparticles and PTFE/MoS2. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

15.
Polytetrafluoroethylene (PTFE) has shown an outstanding lubricity as a solid lubricant, but its application is limited due to its low-mechanical strength and high-wear rate. In this study, core-shell nanoparticles were synthesized using PTFE as the core and polymethylmethacrylate (PMMA) as the shell. The formed core-shell nanocomposites by leveraging the core-shell nanoparticles as basic structural units exhibit remarkable enhancement on uniformity, tensile strength, and wear resistance, compared to mechanically mixed composites with the same composition. Our experiments demonstrated the following results: (1) Owing to the excellent uniformity, the maximum tensile strength of core-shell nanocomposites was 62 MPa, three times higher than that of mechanically mixed composites. (2) The composite matrix formed by PMMA shell had better reinforcement and protection effect on inner PTFE phase, resulting in a reduced wear rate of 0.3 × 10−5 mm3/(N m), one order of magnitude lower than that of mechanically mixed composites. (3) The friction coefficient and interfacial mechanical properties of the core-shell nanocomposites at different temperatures have been systematically studied to get insights into lubrication mechanisms. It is proved that the temperature can decrease the modulus and increase the interfacial adhesion as well as the loss tangent of the core-shell nanocomposites, thus affecting the lubrication properties in multiple ways.  相似文献   

16.
In situ filling of nanomaterials into polymers facilitates the dispersion of the nanofillers and their interface combination with the matrices, and reduces the agglomeration encountered in the nanocomposites prepared by a mechanical mixing method. Polytetrafluoroethylene (PTFE) nanocomposites filled with SiO2 nanospheres (SNS) were fabricated by an in situ sol–gel method in this paper. The SNS in situ filled was highly dispersed in PTFE and showed an excellent combination with the matrix, and the fabricated SNS/PTFE nanocomposites were found a pronounced improvement in stiffness, hardness, glass transition temperature, and hydrophobicity in comparison with the pristine PTFE and the ones prepared by mechanical mixing with the same content. Furthermore, significantly reduced coefficients of friction and volume wear rates were observed on the SNS/PTFE nanocomposites prepared by in situ sol–gel. An operating temperature high up to 200°C and very low volume wear rate were accessible on the optimized SNS/PTFE nanocomposite by in situ filling. The methodology, in situ filling of nanofillers into matrices, might pave a way to prepare nanocomposites with excellent mechanical, thermal, and tribological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号