首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents evidence at molecular level for the chemical interaction between human dentin from different tooth regions and a monomer with phosphate groups, incorporated in the formulation of a simplified adhesive system. Because dentin was observed as a powder, previous verification was obtained for an eventual collagen denaturation due to the grinding process. The presence of chemical bonds involving coronal (CD) or radicular dentin (RD) was investigated using multinuclear magnetic resonance (MR) techniques. Narrow signals were identified in the carbon magic angle spinning (MAS) spectra of CD and RD treated with the adhesive, which were assigned to methylenic groups in methacryloyloxydecyl dihydrogen phosphate (MDP) bound to hydroxyapatite Ca2+; 1H spectra of the adhesive components and treated dentin, in ethanol, support this conclusion. 31P MAS spectra obtained from both dentin regions present additional shielding and broadening effects subsequent to application and photopolymerization of the adhesive, which were higher for CD. Multinuclear MR studies provided evidence for the interaction of the adhesive with dentin, which involves hydroxyapatite and is stronger for CD than for RD, but no direct proof was obtained on bonding to collagen.  相似文献   

2.
郭立童  石瑶  邓长城  刘杰  田军隆  张晓彬  郭天文 《功能材料》2012,43(14):1913-1915,1921
采用硼硅酸盐玻璃体系制备低熔钛专用体瓷,研究了体瓷组成与热膨胀系数的关系,并采用XRD和细胞毒性实验分别研究了钛体瓷的晶相组成和生物相容性。结果表明,钛体瓷为不含晶体的均质玻璃体,其热膨胀系数随SiO2含量的增加而减小;通过对比两种配方的烧结温度与力学性能,最终确定体瓷配方和烧结工艺:自制钛体瓷的烧结温度为760℃,抗弯强度、断裂韧性和维氏硬度分别为(85±4.07)MPa、(1.44±0.04)MPa/m1/2和(3904±21.71)MPa/mm2,硬度稍高于天然牙釉质。XRD结果表明自制钛体瓷为不含晶体的均质玻璃体;细胞毒性为0级,对细胞无抑制作用,可望进一步应用于临床修复。  相似文献   

3.
The beneficiation of sludge from pulp and paper mills to produce high-value products such as crystalline nanocellulose will alleviate the challenges associated with conventional methods of sludge disposal, such as landfilling and incineration. In addition, the use of sludge will reduce the consumption of fresh raw materials in the synthesis of nanocellulose which is usually produced from high-purity cellulose pulps. In this study, fibres were cleaned and separated from sludge and then converted to crystalline nanocellulose using ammonium persulphate under optimised oxidative conditions. To extend potential applications of the crystalline nanocellulose produced, the crystalline nanocellulose was functionalised with zinc oxide, silver and hydroxyapatite to prepare crystalline nanocellulose-zinc oxide, crystalline nanocellulose-silver and crystalline nanocellulose-hydroxyapatite nano- and micro-composites powders using the sol–gel process. Transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction and thermo-gravimetric analysis were used to investigate the properties of crystalline nanocellulose and functionalised crystalline nanocellulose. The transmission electron microscope and field-emission scanning electron microscope coupled with energy-dispersive X-ray spectroscopy confirmed the synthesis of crystalline nanocellulose, and inorganic nanoparticles. Functionalised samples (crystalline nanocellulose-zinc oxide, crystalline nanocellulose-silver and crystalline nanocellulose-hydroxyapatite) showed better thermal stability than pure crystalline nanocellulose. This implies that the modified inorganic crystalline nanocellulose composites could be used in applications where thermal stability is desirable. The cost of production is economically viable as the raw material cost is cheaper compared to the use of wood pulp.  相似文献   

4.
Three different porous scaffolds were tested. The first two were prepared by sintering bovine bone. The third scaffold was prepared using three-dimensional gel-lamination, a new rapid prototyping method, and was named as hydroxyapatite artificial bone. X-ray diffraction and Fourier transform infrared spectroscopy analysis confirmed that the samples were mainly highly crystalline hydroxyapatite ceramics. Scanning electron microscopy and mercury intrusion porosimetry measurement showed that the pores were interconnected and pore sizes ranged from several microns to hundreds of microns. Mouse osteoblast-like cells grown on the three scaffolds retained their characteristic morphology. Cell proliferation and differentiation, analyzed by methylthiazol tetrazolium (MTT) and alkaline phosphatase activity assays, were significantly higher on the hydroxyapatite artificial bone than on the other two scaffolds tested. All the scaffolds provided good attachment, proliferation and differentiation of bone cells. These results indicate that the scaffolds have a favorable interaction with cells, they support cell growth and functions, and therefore these scaffolds may have great potential as bone substitutes. The three-dimensional gel-lamination method is proven to be an attractive process to design and fabricate bone scaffolds with favorable properties, and therefore, has promising potential for bone repair applications.  相似文献   

5.
Hydroxyapatite, a synthetic calcium phosphate ceramic, is used as a biomaterial for the restoration of human hard tissue as well as in techniques which aim to regenerate periodontal tissues. Generally, hydroxyapatite is believed to have osteoconductive effects and to be non-bioresorbable but not to induce to periodontal tissue regeneration. No report has been found on responses of periodontal ligament cells (PDLC), the main contributor to periodontal tissue regeneration, to nanoparticles of hydroxyapatite. The objective of this study was to investigate the possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Using a sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved to comprise nanoparticles by transmission electron microscope examination. The primary periodontal ligament cells were cultured on dense particle hydroxyapatite and nanometer particle hydroxyapatite. The effects on proliferation of periodontal ligament cells on dense and nanoparticle hydroxyapatite were examined in vitro using a methyl thiazolil tetracolium (MTT) test. The intercellular effects were studied with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). In addition, the influence of the two materials on osteogenic differentiation was determined through measurement of alkaline phosphatase activity and flow cytometry. About 2, 3, and 4 days after treatment with nanoparticles of hydroxyapatite, the proliferation activity of the PDLC increased significantly compared with those proliferating on dense hydroxyapatite and of control PDLC, but no significant difference was found between the PDLC proliferation on dense hydroxyapatite and the control PDLCs. After 3 and 5 days’ incubation with nanoparticles of hydroxyapatite, alkaline phosphatase activity was significantly increased as compared to PDLCs incubated with dense hydroxyapatite and control PDLCs. Intracellular engulfment was found in the cultured cells with nanophase hydroxyapatite under electron microscopy. The results suggest that nanophase hydroxyapatite can promote proliferation and osteogenic differentiation of periodontal ligament cells and further that it may be used as a bioresorbable agent in osseous restoration.  相似文献   

6.
Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol‐ene chemistry is employed to achieve rapid light‐curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol‐ene polymerized triacrylates are used as permanent filling materials at the dentin‐pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate‐based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs.  相似文献   

7.
8.
Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite–diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite–diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants.  相似文献   

9.
In the present study, hydroxyapatite (HAp) is synthesized from different biosources like eggshell, fish scale and bovine bone in a cost effective and ecofriendly way. HAp materials were synthesized from eggshell by wet precipitation method whereas thermal decomposition method was applied in case of fish scale and bovine bone. The phase purity and crystallinity of different calcined HAp powder were determined by XRD and FTIR analyses. The thermogravimetric analysis was carried out to show thermal stability of HAp powder. Average grain sizes of sintered samples were in submicron range. The morphology of the powders were observed under scanning electron microscopy (SEM). The dried powders were wet ball milled for several hours and surfactants like Triton-X small fillers (2 / 4 mm long rod-shaped) were made for in vitro testing. In order to verify the biocompatibility of HAp powders, cytotoxicity evaluation was carried out in RAW macrophage like cell line media for an incubation period of 72 h. The cell attachment studies on HAp compacts show an excellent affinity between cells and compact surface. These results proved high biocompatibility of HAp powders obtained from different biosources for tissue engineering applications.  相似文献   

10.
Temporary bone replacement materials on the basis of calcium phosphates and hydroxyapatite (HAP) are used in surgery for filling bone defects. Components which are able to control the nucleation and crystal growth of HAP through their functional groups and which can additionally activate bone cells may be helpful in the development of materials with enhanced remodelling in vivo. In this study, the influence of O-phospho-L-serine (PS) on the materials properties of calcium phosphate bone cement composites was investigated. For up to an addition of 25 mg/g PS a strong increase in the stability of the cements under load was determined. The material was studied by scanning electron microscopy and transmission electron microscopy. A more dense microstructure and a plate-like morphology of the HAP-crystals were detected in the modified composites compared with the non-modified samples. By X-ray powder diffraction an inhibition of the dissolution of alpha-tricalcium phosphate (alpha-TCP) and dicalciumphosphate anhydrous (DCPA) particles was found. alpha-TCP and DCPA are the main constituents of the cement precursor. The results of cell culture studies using rat calvaria osteoblasts demonstrate a good viability of the cells on the PS-modified material. Furthermore, the proliferation and differentiation were found to be enhanced on the PS-modified material.  相似文献   

11.
Titanium nitride (TiN) coating has been proposed as an adjunctive surface treatment aimed to increase the physico-mechanical and aesthetic properties of dental implants. In this study we investigated the biological response of primary human bone marrow stromal cells (BMSC) to TiN-coated sandblasted (TiN-SB) compared to uncoated sandblasted (SB) surfaces. SB and TiN-SB disks were qualitatively and quantitatively analyzed by atomic force microscopy. BMSC were obtained from healthy donors and their adhesion and proliferation on the titanium disks were evaluated by scanning electron microscopy and viability assay. The osteoblastic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis, and extracellular mineralization, was assessed by specific immunoenzymatic or spectrophotometric assays. No difference (P > 0.05) between TiN-SB and SB disks was found in terms of any of the investigated parameters. TiN-coating showed to maintain the topographical characteristics of sandblasted titanium surfaces and their biological affinity toward bone precursors.  相似文献   

12.
Compounds belonging to the calcium phosphate (CaP) system are known to be major constituents of bone and are bioactive to different extents in vitro and in vivo. Their chemical similarity makes them prime candidates for implants and bone tissue engineering scaffolds. CaP nanoparticles of amorphous hydroxyapatite (aHA) and dicalcium phosphate dihydrate (DCPD) were synthesized using chemical precipitation. Uniaxially pressed aHA and DCPD powders were subjected to microwave radiation to promote solid state phase transformations resulting in crystalline hydroxyapatite (HA), tricalcium phosphate (TCP) and biphasic compositions: HA/TCP and TCP/calcium pyrophosphate (CPP) and their subsequent densification. Phase composition of microwave sintered compacts was confirmed via X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Solution pH during crystal growth was found to have a profound effect on particle morphology and post-sintered phases, despite constant sintering temperature.Cytocompatibility assessment using 7F2 cells, corresponding to adult mouse osteoblasts, on microwave and conventional, furnace sintered samples demonstrated that manufacturing method does not impact cellular viability after 24 h or proliferation over 7 days. New CaP deposition and extracellular matrix components were observed in vitro via scanning electron microscopy (SEM).  相似文献   

13.
To investigate the influence of magnetized hydroxyapatite on the growth and differentiation of osteoblasts, hydroxyapatite (HA) and magnetized hydroxyapatite (mHA) were synthesized and characterized. The cell viability, differentiation, and morphologies of osteoblasts were investigated in vitro, respectively. The results showed that compared to HA, cells cultured with mHA had better cell viability, and both HA and mHA were beneficial to the early differentiation of osteoblasts. Furthermore, the interaction mechanism between mHA and osteoblasts was elucidated using a molecular dynamics simulation. The simulation results indicated that when cultured with osteoblasts, HA adsorbed bovine serum protein onto its surface from the medium immediately, which was beneficial to the adhesion and proliferation of osteoblasts. The main driving force for the adsorption of bovine serum was the electronic properties of HA crystal faces. The (211) crystal face of HA had the highest electron density among its all crystal faces, thus mainly contributing to the protein adsorption of HA. Nevertheless, the (211) crystal face of mHA still had a relatively higher electron density than that of HA, thus possessing better protein adsorption than that of HA, and in turn promoting the biological functions of osteoblasts.  相似文献   

14.
The manufacture of high-surface area, un-agglomerated nano-sized (1–100 nm) bioceramic particles are of interest for many applications including injectable/controlled setting bone cements, high strength porous/non-porous synthetic bone grafts, and the reinforcing phase in nano-composites that attempt to mimic the complex structure and superior mechanical properties of bone. In the present study, we report on the manufacture of nano-particle hydroxyapatite powders by several wet chemical methods, which incorporate a freeze-drying step. In particular, it was found that the emulsion-based syntheses yielded powders with high surface areas and small primary particle sizes. Freeze drying rather than oven drying of powders prepared by conventional wet chemical synthesis yielded a nano-sized powder with a comparatively higher surface area of 113 m2/g. All powders were calcined in air in a furnace at 900 °C to investigate the effects of synthesis method on phase purity and surface area. The materials were characterized by a range of analytical methods including Fourier-transform infrared spectroscopy employing the photo acoustic (PAS-FTIR) sampling technique, BET surface area analysis, X-ray powder diffraction (XRD), and the particles were examined using a transmission electron microscope (TEM).  相似文献   

15.
A recently established materials concept of biomimetic composites based on silica, collagen, and calcium phosphates was adapted for the preparation of porous scaffolds suitable for tissue engineering applications. Mineralization was achieved by directed nucleation of silica on the templating organic phase during a sol-gel process with or without addition of hydroxyapatite. Both mineral phases (25 wt %, individually or combined in equal shares) influenced the scaffold's morphology at the nanoscale. Enhancement of apparent density and compressive strength was similar for silica or hydroxyapatite mineralization; however the stiffening effect of hydroxyapatite was much higher. All scaffold modifications provided proper conditions for adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. The open porosity allowed cells to migrate throughout the scaffolds while maintaining their viability, both confirmed by MTT staining and confocal laser scanning microscopy. Initial cell distributions were graduated due to collagen mineralization, but balanced out over the cultivation time of 28 days. RT-PCR analyses revealed higher gene expression of ALP but lower expression of BSP II and osteocalcin because of collagen mineralization. The results demonstrate that both silica and hydroxyapatite offer comparable possibilities to tailor mechanical properties of collagen-based scaffolds without being detrimental to in vitro biocompatibility.  相似文献   

16.
A novel synthetic method to synthesize hydroxyapatite/poly (D,L) lactic acid biocomposite is presented in this study by mixing only the precursors hydroxyapatite and (D,L) LA monomer without adding neither solvent nor catalyst. Three compositions were successfully synthesized with the weight ratios of 1/1, 1/3, and 3/5 (hydroxyapatite/(D,L) lactic acid), and the grafting efficiency of poly (D,L) lactic acid on hydroxyapatite surface reaches up to 84?%. Scanning electron microscopy and Fourier transform infrared spectroscopy showed that the hydroxyapatite particles were successfully incorporated into the poly (D,L) lactic acid polymer and X ray diffraction analysis showed that hydroxyapatite preserved its crystallinity after poly (D,L) lactic acid grafting. Differential scanning calorimetry shows that Tg of hydroxyapatite/poly (D,L) lactic acid composite is less than Tg of pure poly (D,L) lactic acid, which facilitates the shaping of the composite obtained. The addition of poly (D,L) lactic acid improves the adsorption properties of hydroxyapatite for fibronectin extracellular matrix protein. Furthermore, the presence of poly (D,L) lactic acid on hydroxyapatite surface coated with fibronectin enhanced pre-osteoblast STRO-1 adhesion and cell spreading. These results show the promising potential of hydroxyapatite/poly (D,L) lactic acid composite as a bone substitute material for orthopedic applications and bone tissue engineering.  相似文献   

17.
Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F? and Ag+) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1?mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F?. Concentration of Ag+ was under the detection limit (0.001?mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.  相似文献   

18.
本文研究了羟基磷灰石(HA)表面形貌对人成骨肉瘤细胞(MG-63)生物学性能的影响。通过单轴压片技术与粒子占位法相结合控制陶瓷表面孔尺度、形态及分布, 从而获得具有不同表面孔结构的HA陶瓷材料。将材料与MG-63共培养, 通过扫描电子显微镜(SEM), MTT检测法表征材料表面形貌对细胞的黏附和增殖影响, 并通过碱性磷酸酶活性(ALP)检测和实时荧光定量(RT-PCR)技术探讨了HA陶瓷材料的表面结构对MG-63成骨分化的诱导作用。结果表明, 大孔结构(孔径大于200 μm)更有利于细胞的黏附和增殖, 而小孔结构(孔径小于100 μm)能促进细胞的成骨分化。孔形貌和孔分布也能影响细胞的生物功能, 相同尺度的孔径, 不规则蜂窝状的多级微孔结构比光滑孔壁的浅孔结构更能诱导细胞的成骨分化。  相似文献   

19.
This study assess the effects of bioceramic and poly(lactic-co-glycolic acid) composite (BCP/PLGA) on the viability of cultured macrophages and human dental pulp fibroblasts, and we sought to elucidate the temporal profile of the reaction of pulp capping with a composite of bioceramic of calcium phosphate and biodegradable polymer in the progression of delayed dentine bridge after (30 and 60 days) in vivo. Histological evaluation of inflammatory infiltrate and dentin bridge formation were performed after 30 and 60 days. There was similar progressive fibroblast growth in all groups and the macrophages showed viability. The in vivo study showed that of the three experimental groups: BCP/PLGA composite, BCP and calcium hydroxide (Ca(OH)2) dentin bridging was the most prevalent (90 %) in the BCP/PLGA composite after 30 days, mild to moderate inflammatory response was present throughout the pulp after 30 days. After 60 days was observed dentine bridging in 60 % and necrosis in 40 %, in both groups. The results indicate that understanding BCP/PLGA composite is biocompatible and by the best tissue response as compared to calcium hydroxide in direct pulp capping may be important in the mechanism of delayed dentine bridge after 30 and 60 days.  相似文献   

20.
Bone response to hydroxyapatite coating on stainless steel has not been so extensively tested in animals as it happened for other metallic substrate, like Ti6Al4V. For this reason, authors performed an in vivo histomorphological electron microscopic study of hydroxyapatite coating on duplex stainless steel cylinders, to gather further evidences on the characters of bone apposition at the interface. Sixteen HA-coated cylinders were implanted in the distal femur of New Zealand White rabbits. Comparison with uncoated controls was made. Retrieval steps were at: 4, 8, 26 and 34 weeks. Specimens were analyzed in a Jeol JSM 6301F scanning electron microscope. The response to HA-coated samples has a morphological character of tight apposition between bone and coating. Osteocytic lacunae may be found few microns close to the coating and newly formed bone is extremely interlocked with it so that even an higher magnification electron-microscopy cannot resolve any discontinuity in between. Pictures of physiological bone-turnover are distinguishable at the bone-coating interface; areas of well preserved coating may be present together with areas where local exfoliation or fragmentation has already completely exposed the metallic substrate. On the opposite in uncoated samples, despite a morphological picture of properly formed bone, the largest area of the metal has no direct apposition with it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号