首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of mass transfer during osmotic dehydration process in limited volume solutions was carried out to evaluate the diffusion coefficients of sucrose and water in the osmotic treatment of hexahedral pineapple slices. The experimental osmotic dehydration kinetics for pineapple slices of two different sizes were conducted at 25 °C using a 1:1 solution to fruit weight ratio. The analytical solution of a 3D mass transfer model considering a limited volume of osmotic solution (i.e., an osmotic media of variable solute concentration) was used for describing the mass transfer in osmotic dehydration of pineapple slices. This model was fitted to the experimental kinetics by means of nonlinear regression to obtain the diffusion coefficients. Additionally, the diffusion coefficients were evaluated considering an infinite volume of osmotic solution (i.e., an osmotic media of constant solute concentration). Results showed that the proposed model may be fitted accurately to the experimental osmotic dehydration kinetics and allows the estimation of diffusion coefficients when solute concentration in the osmotic media varies along the process.  相似文献   

2.
蓝莓渗透脱水的研究   总被引:2,自引:0,他引:2  
在不同的渗透温度 ( 4 5~ 65℃ )条件下 ,高果糖浆和蔗糖的有效水分扩散率 (Dm)分别为( 4 90 60~ 5 2 3 66)× 1 0 - 10 m2 /s和 ( 3 5 5 1 8~ 4 0 1 0 9)× 1 0 - 10 m2 /s,有效固形扩散率 (Ds)分别为( 2 7740~ 3 691 5 )× 1 0 - 10 m2 /s和 ( 1 3 1 63~ 2 691 5 )× 1 0 - 10 m2 /s的规律。在渗透脱水处理过程中Dm 和Ds 随处理温度升高而增加。经高果糖浆 ( 70°Brix)渗透脱水的蓝莓的平均体积比随温度升高而稍微下降。其相对密度随温度的升高也略有增加  相似文献   

3.
The process variables high hydrostatic pressure (HHP; 100–500 MPa), sucrose concentration (30–70 °Brix), immersion time (5–9 h) and immersion temperature (30–70 °C) were optimised to yield maximum water loss (WL), minimum solid gain (SG), minimum water activity (a w) and minimum browning index (BI) during osmotic dehydration (OD) of banana slices (Musa cavendishii) pretreated by HHP using response surface methodology. The pressure-treated samples showed significantly higher WL and SG during OD (p?<?0.05), which was attributed to the rupture of cell wall with applied pressure, making the cells more permeable, also evident from the scanning electron micrographs of the banana tissue. The optimised operating conditions were: HHP of 200 MPa for a dwell time of 5 min at room temperature (26 °C), sucrose concentration of 60 °Brix, immersion time of 5 h and immersion temperature of 40 °C. A study of the concentration profiles during OD revealed no appreciable increase in SG and WL after 4 h; hence, immersion time was reduced to 4 h. The optimised product developed was dried to a moisture content of 15 % (wet basis) in a dehumidified air dryer at an air temperature of 40, 55 and 70 °C with a fixed air velocity of 3.8 m/s and relative humidity maintained at 20 %. The final dried product was analyzed for total soluble solids content, BI and a w. A drying temperature of 55 °C was found to give superior quality OD banana slices in terms of reduced bulk, improved flavour, decreased a w (<0.60), and reduced dehydration time and energy using HHP as a pretreatment.  相似文献   

4.
Microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions is an innovative concept with high potential for enhancing moisture loss as well as improving product quality. Quantification of mass transfer kinetics under different processing conditions is important for managing and optimizing the osmotic dehydration process. A response surface methodology was used for evaluating and quantifying the moisture loss and solids gain kinetics of apples during the MWODS process. Experiments were designed according to a central composite rotatable design with all independent variables included at five levels (sucrose concentration, 33.3–66.8°Brix; medium temperature, 33.3–66.8 °C; medium flow rate, 2,120–3,480 ml/min; and medium contact time, 5–55 min). The process responses were moisture loss (ML), solids gain (SG), and weight reduction (WR) and were related to process variables using second-order polynomial regression models. The lack of fit was not significant (p?>?0.05) for any of the developed models. For ML, SG, and WR, the medium contact time was the most significant factor during the MWODS process followed by medium temperature and sucrose concentration. The effect of medium flow rate was only significant with moisture loss and weight reduction. The quantity of ML, SG, or WR achieved over a 30 min treatment time was chosen as the drying rate. These rates were shown to be responsive to the osmotic treatments increasing with sucrose concentration, medium flow rate, and medium temperature.  相似文献   

5.
In this study, the effect of different osmotic solution concentrations (20–60% w/w of sucrose with 10% w/w NaCl salt), fruit to solution ratios (1:9–1:3), immersion times (0.5–4 h), and temperatures (15–55°C) on the mass transfer kinetics during osmotic dehydration of melons (Curcumis melo L.) in ternary solution namely sucrose–salt–water followed by air-drying were investigated. The effective diffusion coefficients for sucrose and water during osmotic dehydration were determined, assuming osmotic dehydration to be governed by Fickian diffusion. The estimated parameters allowed optimizing the system to reduce total processing time. The optimum treatments were with 50% sucrose and 10% NaCl salt concentration, fruit to solution ratio of 1:4 for 1 h at 45°C. Samples non-treated and pre-treated in optimized conditions were dried in a hot-air dryer at 60°C until equilibrium was achieved after 2.5 h. Pre-treatment reduced the air-drying period in up to 6.8 h.  相似文献   

6.
The aim of the present work is to study the kinetics of osmotic dehydration of Caldesi nectarines (Prunus persica var. nectarina) evaluating the effect of osmotic solution concentration, type of solute, temperature, fruit/solute ratio and process time on moisture content, water loss, soluble solids content and solids gain. The process analysis was carried out experimentally and numerically through the mathematical modelling of mass transfer. Hypertonic solutions of glucose syrup and sorbitol (40 and 60 % w/w) were used for dehydration, during 2 h of process at temperatures of 25 and 40 °C, with fruit/osmotic agent ratio of 1:4 and 1:10. Water loss and solids gain showed significant differences depending on the type and concentration of the osmotic agent, process time and fruit/solution ratio. The concentration interacted significantly with all variables; in addition, there was an interaction between the type of osmotic agent and the relationship between fruit and the osmotic agent. The effective diffusion coefficients were obtained from the analytical solution of Fick’s second law applied to flat-plate geometry and by solving the mass transfer microscopic balances by finite element method, taking into account the real geometry of the nectarine pieces. The values obtained from Fick’s law varied between 1.27?×?10?10 and 1.37?×?10?08?m2?s?1 for water and from 1.14?×?10?10 to 1.08?×?10?08?m2?s?1 for soluble solids, while the values calculated by finite elements method ranges were between 0.70?×?10?09 and 4.80?×?10?09?m2?s?1 for water and between 0.26?×?10?09 and 1.70?×?10?09?m2?s?1 for soluble solids. The diffusion coefficients values obtained from the numerical solution are consistent with those published in literature.  相似文献   

7.
A model fruit system (apple slices) was studied during osmotic preconcentration in concentrated solutions of corn syrup solids. The effect of freeze/thawing on water removal and solid uptake rates during complimentary osmotic dehydration was examined. Product response to freeze/thawing after partial osmotic dehydration was also explored. Osmotically preconcentrated, frozen/thawed samples did not exhibit a significant change in rate of water loss during complimentary osmotic dehydration. They had sharply higher sugar gain rates compared to controls. The duration of osmotic preconcentration had a significant effect on freeze/thaw induced exudation losses.  相似文献   

8.
ABSTRACT:  Osmotic dehydration of tomato was modeled by the classical Fick's law including shrinkage, convective resistance at the interface and the presence of water bulk flow. Tomato slices having 8 mm thickness were osmotically dehydrated in sucrose solutions at 50, 60, and 70 °Brix and at 35, 45, and 55 °C. Other experiments were done in a 70 °Brix sucrose solution at 35 °C with tomato slices of 4, 6, and 8 mm thickness and at different motion levels (velocities 0, 0.053, and 0.107 m/s). Tomato weight, water content, and °Brix of the products were measured as a function of processing time (20, 40, 80, 160, and 320 min). Results showed that temperature, concentration, thickness, and solution movement significantly influenced water loss and sucrose gain during the osmotic dehydration of tomato. The model predicted the modifications of soluble solid content and water content as a function of time in close agreement with the experimental data. Experimental Sherwood number correlations for sucrose and water were determined as Sh s = 1.3 Re 0.5 Sc s0.15 and Sh w = 0.11 Re 0.5 Sc w0.5, respectively. The effective diffusion coefficients of water (4.97 10−11– 2.10 10−10 m2/s) and sucrose (3.18 10−11– 1.69 10−10 m2/s) depended only on temperature through an Arrhenius-type relationship.  相似文献   

9.
The objective of this study was to investigate the possibility of using ultrasound-assisted osmotic dehydration (UAOD) as a pretreatment prior to frying and to study its effects on the quality of fried potatoes. The quality parameters, moisture content, oil uptake, color, texture, and microstructure of fried potatoes, were chosen. Quality of fried potatoes treated with UAOD was also compared with the ones treated with osmotic dehydration (OD). Potato slabs (40 × 40 × 7 mm) were pretreated with different osmotic solutions (15 % sodium chloride and 15 % sodium chloride/50 % sucrose solutions) at different temperatures (25, 45, and 65 °C) with and without ultrasonic waves for different treatment times. The pretreatment conditions which are OD for 90 min and UAOD for 30 min using 15 % sodium chloride/50 % sucrose solution were applied prior to frying at 170 °C for 2, 4, and 6 min. UAOD reduced the oil content of fried potatoes by 12.5 % (db) as compared to untreated fried potatoes at the end of frying. There was no significant difference between OD and UAOD in reduction of oil uptake in fried potatoes. However, UAOD was found to have the advantage of improving the color of French fries. In addition, it shortened the pretreatment time of OD by about 67 %. Cell structure of fried potato was damaged in the presence of pretreatments of OD and UAOD.  相似文献   

10.
In this study, the effect of ultrasonic pre-treatment on osmotic dehydration of kiwi slices was investigated. Kiwi fruit slices were subjected to ultrasonic pre-treatment in a sonication water bath at a frequency of 25 kHz for 20 min. Osmotic dehydration of ultrasonic pre-treated samples were conducted for a period of 300 min in 60 Brix sucrose solution. The kinetics of moisture loss and solute gain during osmotic dehydration were predicted by fitting the experimental data with Azuara's model and Weibull's model. The effects of ultrasound application on water loss, sugar gain, effective moisture diffusivity and solute diffusivity of the samples were analysed. The osmotic dehydration process showed a rapid initial water loss followed by a progressive decrease in the rates in the later stages. From the Azuara's model, the predicted equilibrium water loss value for ultrasound pre-treated sample was 58.4% (wb) at 60°C that was nearly 16% higher than the samples treated under atmospheric conditions. Fitting of Weibull model showed that the ultrasound pre-treated and untreated samples had shape parameter (βw) ranging between 0.570–0.616 and 0.677–0.723 respectively. The lower values of shape parameter indicated that sonication caused accelerated water loss resulting faster dehydration rate. Results indicated that the effective moisture diffusivity and solute diffusivity was enhanced in ultrasonic pre-treated samples. The effective moisture diffusivity during osmotic dehydration of ultrasonic pre-treated samples was ranged between 5.460×10−10–7.300×10−10 m2/s and solute diffusivity was varied between 2.925×10−10–3.511×10−10 m2/s within the temperature range 25–60 °C. The enhanced moisture and solute diffusivity in ultrasound pre-treated kiwi slices was due to cell disruption and formation of microscopic channels.  相似文献   

11.
Pulsed vacuum osmotic dehydration (PVOD) is a widely used technique for reducing moisture content and water activity in biological products. This study aimed to analyze the effect of vacuum application (VA) on PVOD of beetroot, carrot, and eggplant slices, with respect to chemical (moisture, water activity, specific pigments, polyphenols, and sodium content), optical (color), mechanical (shrinkage, maximum stress, and elasticity), and structural (microstructure) properties. PVOD was conducted at three different vacuum pressures (0, 40, and 80 kPa, for 10 min), during a total process time of 300 min. Osmotic processing was performed at 35 °C by using a ternary osmotic solution [40% sucrose +?10% sodium chloride (w/w)]. Eggplant and carrot samples were more sensitive to VA, compared to beetroot. This was related to their porous and less compact structure. In general, VA reduced the moisture content and water activity and preserved the carotenoid content. VA caused loss of betalain and phenolic acid, favored sodium uptake, and induced significant changes in the optical, mechanical, and structural properties, compared to the osmotic processing conducted at atmospheric pressure.  相似文献   

12.
The objective of this study was to model and optimize the mass transfer behavior during microwave osmotic dehydration of apple cylinders under continuous-flow spray mode processing conditions. Data needed for the model development and optimization were obtained using a central composite rotatable experimental design involving sucrose concentration (33.3–66.8°B), temperature (33.3–66.8 °C), flow rate (2,120–3,480 ml/min), and contact times (5–55 min); and the response variables were moisture loss, solids gain, and weight loss. Mass transfer kinetics was evaluated based on the empirical Azuara model and the conventional diffusion model. Diffusivities of both moisture loss (D m) and solids gain (D s) obtained from the diffusion model were related to sucrose concentration, temperature, and flow rate. Optimization was evaluated using a desirability function model which could be used with several imposed constraints. The optimum conditions obtained depended on the imposed constraints. A set of constraints involving maximizing moisture loss and weight reduction while keeping the solids gain below 3.5% gave the following optimal conditions: a 30-min osmotic treatment at 65°B, 60 °C, and 2,800 ml/min flow rate yielding a moisture loss of 40.9%, weight reduction of 37.7%, with a solids gain of 3.32%.  相似文献   

13.
以脱水率、固形物获取率、脱水率与固形物获取率比值、有效水分扩散系数、活化能、VC保留率、辣度、复水比、复原率和感官评价为考察指标,通过渗透脱水实验、渗后热风干燥实验和复水实验,考察了辣椒的渗透脱水特性、渗后热风干燥特性、复水特性和品质。结果表明:随着渗透温度的升高或渗透液中食盐含量的增加,辣椒的脱水率和固形物获取率增大。对渗透后的辣椒样品进行热风干燥处理发现,热风温度是影响热风干燥的最主要因素,其次是风速。辣椒样品的有效水分扩散系数随着温度的升高而增大,在风速为1.8 m/s的条件下,直接热风干燥辣椒样品和渗后热风干燥辣椒样品的活化能分别为(53.25±1.08)k J/mol和(44.42±0.88)k J/mol。渗后热风干燥样品的有效水分扩散系数、VC保留率、辣度、复水比和复原率均高于直接热风干燥样品,渗后热风干燥样品的复水特性和品质更好。  相似文献   

14.
Osmotic dehydration effects on the kinetics and on some quality attributes of green banana slices (Musa cavendishii) at 25 °C with non-caloric solutes (glycerol, sorbitol, and a mixture of both) at concentrations varying from 40 to 60 g/100 g for up to 6 h were studied. The three-component diagram showed that the first pseudo-equilibrium was achieved, and the water pseudo-diffusion coefficient presented higher values with glycerol solutions. A modified Peleg’s model was applied to obtain the maximum water loss. Changes in green banana physical-chemical properties were observed: moisture content from 1.25 to 0.19 kg/kg dry basis, soluble solute content from 5.4 to 16.9 °Brix; total color-difference from 2.7 to 15.8; and the maximum biaxial extensional viscosity from 0.63 to 1.53 MPa s. Moreover, the obtained low chroma difference values suggest that the osmotically drying process may be a suitable technique to preserve the final color of green banana slices.  相似文献   

15.
Rabbiteye blueberries were dried using an experimental high temperature fluidized bed (HTFB) dehydrator and the properties of the dried product were evaluated. 15 m/sec air velocity was required for fluidization and at 170°C the moisture content (MC in kg water/kg dry matter) of thawed blueberries was reduced from 5.8 to 0.7 after 8 min. After osmotic dehydration in sucrose, MC was 1.3, and 4 min in the HTFB drier at 150°C reduced MC to 0.28. Reduction of water activity to 0.5 after HTFB required cabinet drying at 60°C and 4 m/ set for 2.13 and 2.75 hr for the untreated and osmotically dehydrated berries, respectively. HTFB simultaneously dried and puffed the berries, resulting in reduced bulk density compared to berries produced using conventional drying. Osmotic dehydration prior to HTFB imparted a raisin-like texture to the product.  相似文献   

16.
High intensity electrical field pulse (0.22 to 1.60 kV/cm) pretreatment was tested to accelerate the osmotic dehydration of carrot. Applied energy in the range of 0.04 to 2.25 kJ/kg, increased cell disintegration index in the range of 0.09 to 0.84 with < 1 °C rise in the product temperature. The effective diffusion coefficients of water and solute, determined using a Fickian diffusion model, increased exponentially with electric field strength according to D = A exp(-B/E). The rise in effective diffusion coefficient may be attributed to an increase in cell wall permeability, facilitating transport of water and solute. Such increase was evidenced by cell disintegration index and softening of product.  相似文献   

17.
The effect of blanching by ohmic heating (OH) on the kinetics of osmotic dehydration of strawberries was studied. Ohmic heating parameters obtained at two temperatures (65 and 85 °C). The osmotic dehydration (OD) parameters are the temperature (26 and 37 °C) and the sucrose in osmotic solution (30–70 °B). An approximate solution of Fick’s law for unsteady state mass transfer in spherical configuration has been used to calculate the effective diffusion coefficients of water and sucrose. Results show that ohmic heating increases drastically the mass transfer and the effective diffusion rates. After 4 h of OD (without OH) in a sucrose solution (at 37 °C and 70 °B), the dry matter of the untreated strawberry halves was 20.3%; while it reached 68% when OD was combined with blanching by OH at 85 °C for 3-min. Ohmic blanching permits the effective damage of cells by combination of electrical and thermal effects. That result has an important enhancement of water and sugar transfers during osmotic dehydration of strawberries.  相似文献   

18.
The aim of this study was to use the process of osmotic dehydration to enrich banana slices with Lactobacillus rhamnosus encapsulated in a double emulsion. The effect of a pulsed vacuum and the concentration of the osmotic solution on the impregnation of the microorganism and on mass transfer during osmotic dehydration of the fruit were assessed. The kinetics of the water loss (WL), solid gain (SG) and water activity (aw) were obtained using an aqueous solution with 40, 50 and 60% sucrose with emulsion and a vacuum pulse of 50 mbar for 10 and 20 min at the beginning of the osmotic process. The high concentrations of sucrose in the osmotic solution, combined with the application of a pulsed vacuum, produced an increase in the rates of WL and SG of the osmodehydrated banana, as well as a reduction of its aw. L. rhamnosus survived at levels above 107 CFU/g in the hypertonic solution and in the osmodehydrated bananas. Scanning electron microscopy (SEM) showed that the encapsulated probiotic adheres to the banana’s surface, which demonstrates that double emulsions can be used to impregnate probiotics in vegetal tissues.  相似文献   

19.
This article studied the use of diffusion models to describe variation of water quantity and sucrose quantity during osmotic dehydration of bananas cut into cylindrical slices. Bananas with radius of 1.7 cm and 18 °Brix (on average) were cut into 1.0 cm of thickness. A solution was proposed for the diffusion equation in cylindrical coordinates using the finite volume method, with fully implicit formulation. The diffusion equation was discretized assuming diffusivities and dimensions with variable values for the banana slices. Boundary conditions of the third kind have also been considered. The osmotic dehydration experiments were conducted in binary solutions (water and sucrose) under conditions of 40 and 60 °Brix and temperatures of 40 and 70°C. Mathematical modeling was proposed to describe the processes presented good results for water quantity and sucrose quantity, with good statistical indicators for all fits.  相似文献   

20.
Pomegranate seeds were osmodehydrated using date juice added with sucrose (final °Brix, 55) as immersion solution. The kinetics of osmotic dehydration showed that the most significant changes of mass transfer took place during the first 20 min of the process, regardless of date juice varieties. During this time, seed water loss and solid gain were estimated to be ∼39% and ∼6%, respectively. After 20 min of the process, the percentage of water loss and solid gain varied slightly and ranged on average close to ∼40% and ∼9%, respectively. During osmotic dehydration, there was a leaching of natural solutes from seeds into the solution, which is quantitatively not negligible, and might have an important impact on the sensorial and nutritional value of seeds and date juices. Both scanning electron microscopy and texture (compression) analysis revealed that osmotic dehydration process induced modifications of seed texture and cell structure. Sucrose was found to be the essential element which influences the texture of seed and the viscosity of date juice. Additionally, natural sugar present in date juice permits substituting 35% of the total quantity of sucrose added to the osmotic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号