首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Synthetic strategies that enable the efficient and selective combination of different biologically active entities hold great promise for the development of multifunctional hybrid conjugates useful for biochemical and medical applications. Starting from side‐chain‐functionalized N(α)‐propargyl lysine derivatives, conjugates containing a 99mTc‐based imaging probe for SPECT and two different moieties (e.g., tumor‐targeting vectors, pharmacological modifiers, affinity tags, or second imaging probes) can be assembled using the CuI‐catalyzed alkyne–azide cycloaddition in efficient one‐pot protocols. This strategy was successfully applied to the preparation of a 99mTc‐labeled conjugate comprising a tumor‐targeting peptide sequence (bombesin(7–14)) and a low‐molecular‐weight albumin binder, a pharmacological modifier that prolongs the blood circulation time of the conjugate. Evaluation of the conjugate in vitro and in vivo provided promising results for its use as an imaging agent for the visualization of tumors positive for the gastrin‐releasing peptide receptor. The methodology presented herein provides an attractive synthetic tool for the preparation of multifunctional 99mTc‐based radiopharmaceuticals with significant potential for a multitude of applications.  相似文献   

2.
Tetralin‐1,4‐dione, the stable tautomer of dihydroxynaphthalene, was reduced with catecholborane in the presence of 3,3‐diphenyl‐1‐butyltetrahydro‐3H‐pyrrolo[1,2‐c][1,3,2]oxazaborole as catalyst to give enantiomerically highly enriched 4‐hydroxy‐1‐tetralone (99% ee) in an efficient one‐pot procedure. The R‐enantiomer provided a rapid access to sertraline while the S‐enantiomer was converted into 2‐epicatalponol and catalponol. A more selective enantioselective route to the antithermitic catalponol made use of the planar chiral tricarbonylchromium complex of hydroxytetralone. Its precursor chromium(tricarbonyl)[η6‐(1‐4,4a,8a)‐tetralin‐5,8‐dione] was obtained via direct complexation of 1,4‐dihydroxynaphthalene using chromium(tricarbonyl)‐ tris(ammonia) and boron trifluoride etherate as source of the chromium(tricarbonyl) fragment. Enolate prenylation was best carried out in the presence of a tetraamine ligand. Complete inversion of the stereogenic center bearing the prenyl group of the initially obtained tetralone complex was achieved via enolate formation followed by protonation.  相似文献   

3.
To develop a theranostic agent for diagnostic imaging and treatment of  hepatocellular carcinoma (HCC), poly(HPMA)‐APMA‐DTPA‐99mTc (HPMA: N‐(2‐hydroxypropyl methacrylamide; APMA: N‐(3‐aminopropyl)methacrylamide; DTPA: diethylenetriaminepentaacetic acid) and DTPA‐99mTc were synthesized and characterized, and their HCC targeting was tested by in vitro cellular uptake and in vivo tumor imaging in this study. Radioactivity of HCC cells incubated with poly(HPMA)‐APMA‐DTPA‐99mTc was significant higher (16.40%) than that of the cells incubated with DTPA‐99mTc (2.98%). Scintigraphic images of HCC in mice obtained at 8 h after injection of poly(HPMA)‐APMA‐DTPA‐99mTc showed increased radioactivity compared with that in mice injected with DTPA‐99mTc. The results of postmortem tissue radioactivity assay demonstrated higher radioactivity of HCC tumor tissues (2.69 ± 0.15% ID/g) from the tumor‐bearing mice injected with poly(HPMA)‐APMA‐DTPA‐99mTc compared with that of HCC tumor tissues in the tumor‐bearing mice injected with DTPA‐99mTc (0.83 ± 0.03 %ID/g), (P <0.001). These results first directly confirm the significant passive hepatocellular tumor targeting of HPMA copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Radionuclide imaging of HER2 expression in tumours may enable stratification of patients with breast, ovarian, and gastroesophageal cancers for HER2-targeting therapies. A first-generation HER2-binding affibody molecule [99mTc]Tc-ZHER2:V2 demonstrated favorable imaging properties in preclinical studies. Thereafter, the affibody scaffold has been extensively modified, which increased its melting point, improved storage stability, and increased hydrophilicity of the surface. In this study, a second-generation affibody molecule (designated ZHER2:41071) with a new improved scaffold has been prepared and characterized. HER2-binding, biodistribution, and tumour-targeting properties of [99mTc]Tc-labelled ZHER2:41071 were investigated. These properties were compared with properties of the first-generation affibody molecules, [99mTc]Tc-ZHER2:V2 and [99mTc]Tc-ZHER2:2395. [99mTc]Tc-ZHER2:41071 bound specifically to HER2 expressing cells with an affinity of 58 ± 2 pM. The renal uptake for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 was 25–30 fold lower when compared with [99mTc]Tc-ZHER2:2395. The uptake in tumour and kidney for [99mTc]Tc-ZHER2:41071 and [99mTc]Tc-ZHER2:V2 in SKOV-3 xenografts was similar. In conclusion, an extensive re-engineering of the scaffold did not compromise imaging properties of the affibody molecule labelled with 99mTc using a GGGC chelator. The new probe, [99mTc]Tc-ZHER2:41071 provided the best tumour-to-blood ratio compared to HER2-imaging probes for single photon emission computed tomography (SPECT) described in the literature so far. [99mTc]Tc-ZHER2:41071 is a promising candidate for further clinical translation studies.  相似文献   

5.
Triterpenes of betulinic acid type exhibit many interesting biological activities. Therefore a series of new 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid derivatives 2a—22 with putative pharmacological activities were synthesized. As starting compounds 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid ( 1a ), isolated from Schefflera octophylla, or its 3‐O‐acetyl derivative 1b were used. Mono‐ and diesters ( 2a—b from 1a , and 4d from 4c ) were prepared with CH2N2. Oxidation of the isopropenyl side chain with OsO4 yielded the 20,29‐diols ( 4a—b from 1b , and 19 from 17 ), which were in the case of 4b further transformed to the 29‐norketones 8a/mdash;b . Oxidation of the isopropenyl side chain with m‐chloroperbenzoic acid afforded the 20,29‐epoxide 12 (from 1b ) and the 29‐aldehydes and a‐hydroxy aldehydes ( 13a—c from 2a, 14a—c from 2b , and 16a—c from 15a ). Ring A was modified by a tosylation—elimination sequence using p‐TsCl/NaOAc, which afforded diolefin 15a (from 2a ) with Δ2,20(29) double bonds or 23‐nor‐Δ3,20(29)diolefin 17 (from 1a ). Compounds 4b, 4c , and 8a were coupled with L ‐methionin, L ‐phenylalanin, L ‐alanin, L ‐serin, and L ‐glutaminic acid via amide bonds at positions 23 and 28 to afford the amino acid conjugates 5a—7b and 9a—11 .  相似文献   

6.
A method for the preparation of 11α‐hydroxy derivatives of lithocholic and chenodeoxycholic acids, recently discovered to be natural bile acids, is described. The principal reactions involved were (1) elimination of the 12α‐mesyloxy group of the methyl esters of 3α‐acetate‐12α‐mesylate and 3α,7α‐diacetate‐12α‐mesylate derivatives of deoxycholic acid and cholic acid with potassium acetate/hexamethylphosphoramide; (2) simultaneous reduction/hydrolysis of the resulting △11‐3α‐acetoxy and △11‐3α,7α‐diacetoxy methyl esters with lithium aluminum hydride; (3) stereoselective 11α‐hydroxylation of the △11‐3α,24‐diol and △11‐3α,7α,24‐triol intermediates with B2H6/tetrahydrofuran (THF); and (4) selective oxidation at C‐24 of the resulting 3α,11α,24‐triol and 3α,7α,11α,24‐tetrol to the corresponding C‐24 carboxylic acids with NaClO2 catalyzed by 2,2,6,6‐tetramethylpiperidine 1‐oxyl free radical (TEMPO) and NaClO. In summary, 3α,11α‐dihydroxy‐5β‐cholan‐24‐oic acid and 3α,7α,11α‐trihydroxy‐5β‐cholan‐24‐oic acid have been synthesized and their nuclear magnetic resonance (NMR) spectra characterized. These compounds are now available as reference standards to be used in biliary bile acid analysis.  相似文献   

7.
α‐Hydroxylamino phosphonates are synthesised in a one‐pot operation by three‐component coupling reactions of aldehydes, hydroxylamines and diethyl phosphite using 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim]BF4) or 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim]PF6) ionic liquids under mild and neutral conditions. The recovered ionic liquids can be recycled for four to five runs without loss of activity.  相似文献   

8.
A facile three‐step synthesis of racemic cyclopropylglycine in multigram quantities from inexpensive cyclopropyl methyl ketone has been elaborated. Enzymatic hydrolysis of the N‐Boc‐protected methyl ester of cyclopropylglycine 9 with the inexpensive enzyme papain from Carica papaya affords both enantiomers of cyclopropylglycine ( 8 ) with enantiomeric excesses of 99 % or better after deprotection under acidic conditions. Furthermore, the new cyclopropyl group‐containing building block methyl 2‐cyclopropyl‐2‐N‐Boc‐iminoacetate ( 13 ) was prepared by N‐chlorination and subsequent dehydrochlorination with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU). Addition of nucleophiles to 13 offers a ready access to an unusual, orthogonally bisprotected α,α‐diamino acid derivative and interesting components of rigid peptide backbones.  相似文献   

9.
Diagnosis and localization of bacterial infections remains a significant clinical challenge. Harnessing bacteria‐specific metabolic pathways, such as the maltodextrin transport mechanism, may allow specific localization and imaging of small or hidden colonies. This requires that the intrabacterial tracer accumulation provided by the transporter is matched by high serum stability of the tracer molecule. Herein, radiolabeled maltodextrins of varying chain lengths and with free nonreducing/reducing ends are reported and their behavior against starch‐degrading enzymes in the blood, which compromise their serum stability, is evaluated. Successful single‐photon emission computed tomography (SPECT) imaging is shown in a footpad infection model in vivo by using the newly developed model tracer, [99mTc] MB1143 , and the signal is compared with that of 18F‐fluorodeoxyglucose positron emission tomography ([18F]FDG‐PET) as a nonbacterial specific marker for inflammation. Although the [99mTc] MB1143 imaging signal is highly specific, it is low, most probably due to insufficient serum stability of the tracer. A series of stability tests with different 18F‐labeled maltodextrins finally yielded clear structural guidelines regarding substitution patterns and chain lengths of maltodextrin‐based tracers for nuclear imaging of bacterial infections.  相似文献   

10.
The reaction conditions for the conversion of 6‐endo‐tosyloxybicyclo[2.2.2]octan‐2‐one ( 7b ) into 6‐exo‐acetoxy ( 8b ) and 6‐exo‐benzoyloxybicyclo[2.2.2]octan‐2‐one ( 8a ), respectively, were improved. Thus known 6‐endo‐tosyloxy‐bicyclo[2.2.2]octan‐2‐ones (+)‐(1RS,6SR,8SR,11RS)‐11‐[(4‐toluenesulfonyl)oxy]tricyclo[6.2.2.01,6]dodecan‐9‐one ( 1a ), 13‐methyl‐15‐oxo‐9β,13b‐ethano‐9β‐podocarpan‐12β‐yl‐4‐toluenesulfonate ( 3a ), and methyl (13R)‐16‐oxo‐13‐[(4‐tolylsulfonyl)oxy]‐17‐noratisan‐18‐oate ( 5 ), were converted,in comparable yields, as previously recorded, but much shorter times, into (+)‐(1RS,6SR,8SR,11SR)‐11‐(benzoyloxy) tricyclo[6.2.2.01,6]dodecan‐9‐one ( 2 ), 13‐methyl‐15‐oxo‐9β,13β‐ethano‐9β‐podocarpan‐12α‐yl benzoate ( 4 ), and methyl (13S)‐13‐(benzoyloxy)‐16‐oxo‐17‐noratisan‐18‐oate ( 6 ), respectively.  相似文献   

11.
In this work, different impact modifiers such as acrylic resin impact modifier, chlorinated polyethylene (CPE), nitrile rubber, powdered nitrile rubber, and hydrogenated nitrile rubber, were chosen to improve the toughness of (acrylonitrile‐styrene‐acrylic copolymer)/(α‐methylstyrene‐acrylonitrile copolymer) (ASA/α‐MSAN) binary blend. The blend ratios of the ASA/(α‐MSAN)/(impact modifier) ternary system were 30/70/20 and 70/30/20 by mass, respectively. The results showed that the impact strength significantly increased, nearly 30 times (22.59 kJ·m?2, 22.26 kJ·m?2, and 25.24 kJ·m?2) compared with that of control samples (0.80 kJ·m?2) when nitrile rubber, powdered nitrile rubber, or hydrogenated nitrile rubber was added to the ASA/(α‐MSAN) (30/70) matrix, respectively. Moreover, the impact strength of ASA/(α‐MSAN) (70/30) was dramatically enhanced to 46 kJ·m?2 with the addition of 20 parts by weight per hundred parts of resin of chlorinated polyethylene. The toughness of ASA/(α‐MSAN) with or without impact modifiers was also characterized via fracture energy calculated from stress‐strain curves. The results were perfectly consistent with that of impact strength. The results of dynamic mechanical analysis demonstrated the existence of α‐MSAN (glass transition temperature at approximately 140°C). The heat distortion temperature was barely changed, indicating the addition of impact modifiers barely affects the heat resistance. J. VINYL ADDIT. TECHNOL., 22:326–335, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
A new tridentate bifunctional chelator, N‐(‐2‐picolyl)(‐4‐hydroxy)(‐3‐amino)benzoic acid (PHAB), was designed to efficiently coordinate the [99mTc(CO)3]+ core and facilitate coupling reactions to biomolecules. The chelator can be procured in the form of the corresponding benzotriazole ester (PHAB‐OBT), which can be stored and used as a bioconjugation kit. PHAB‐OBT reacts with modified carbohydrates with high selectivity and efficiency in a single step in both aqueous and organic media. As is desirable for a kit, no complicated chemical bench work is required. Glycoconjugate postlabeling resulted in neutral radiolabeled glycans with high radiochemical yields. Prelabeling approaches were assessed by successive reaction of PHAB‐OBT with the [99mTc(CO)3]+ core and a modified galactose model. The radiolabeled galactose was obtained in 84 % yield as defined by HPLC analysis. Biodistribution of the radioactive 99mTc‐labeled chelator, as well as the glycoconjugates, were examined in mice. Noticeably different biodistribution patterns were observed that reflect trends in the uptake of carbohydrate analogues by various organs.  相似文献   

13.
A method for the synthesis of two (23R)‐ and (23S)‐epimeric pairs of 23‐fluoro‐3α,7α,12α‐trihydroxy‐5β‐cholan‐24‐oic acid and 23‐fluoro‐3α,7α‐dihydroxy‐5β‐cholan‐24‐oic acid is described. The key intermediates, 23,24‐dinor‐22‐aldehyde peracetates were prepared from cholic and chenodeoxycholic acids via the 24‐nor‐22‐ene, 24‐nor‐22ξ,23‐epoxy, and 23,24‐dinor‐22‐aldehyde derivatives. The Horner–Wadsworth–Emmons reaction of the 23,24‐dinor‐22‐aldehydes using triethyl 2‐fluoro‐2‐phosphonoacetate in the presence of LiCl and 1,8‐diazabicyclo[5,4,0]undec‐7‐ene (DBU), and subsequent hydrogenation of the resulting 23ξ‐fluoro‐22‐ene ethyl esters, followed by hydrolysis, gave a mixture of the epimeric (23R)‐ and (23S)‐fluorinated bile acids which were resolved efficiently by preparative RP‐HPLC. The stereochemical configuration of the fluorine atom at C‐23 in the newly synthesized compounds was confirmed directly by the X‐ray crystallographic data. The 1H and 13C NMR spectral differences between the (23R)‐ and (23S)‐epimers were also discussed.  相似文献   

14.
The preparation of new compounds, 1,1‐bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethanol and a new symmetrically disubstituted 1,1‐diphenylethylene derivative, 1,1‐bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethylene, is described. 1,1‐Bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethylene was utilized as a dioxazolyl initiator precursor for the polymerization of styrene by atom transfer radical polymerization (ATRP) methods to produce α‐bis(oxazolyl) polystyrene. The kinetic study of the polymerization process indicated that the free radical polymerization reaction for the preparation of α‐bis(oxazolyl) polystyrene follows first‐order rate kinetics with respect to monomer consumption. α,ω‐Tetrakis(oxazolyl) polystyrene was prepared by a new, in situ, controlled/living, post‐ATRP chain‐end‐functionalization reaction which involves the direct addition of 1,1‐bis[4‐(2‐(4,4‐dimethyl‐1,3‐oxazolyl))phenyl]ethylene to the ω‐terminus of the α‐bis(oxazolyl) polystyrene derivative, without the isolation and purification of the polymeric precursor. α‐Bis(carboxyl) and α,ω‐tetrakis(carboxyl) polystyrene derivatives were obtained by the quantitative chemical transformation of the oxazoline groups of the respective aromatic oxazolyl chain‐end‐functionalized polystyrene derivatives to the aromatic carboxyl groups. The organic precursor compounds, the dioxazolyl‐functionalized 1,1‐diphenylethylene derivative and the functionalized polymers were characterized using 1H NMR and 13C NMR spectrometry and Fourier transform infrared spectroscopy, size‐exclusion and thin‐layer chromatography and non‐aqueous titration measurements. © 2014 Society of Chemical Industry  相似文献   

15.
BACKGROUND: PEGylation reactions often result in a heterogeneous population of conjugated species and unmodified proteins that presents a protein separations challenge. Aqueous two‐phase systems (ATPS) are an attractive alternative for the potential fractionation of native proteins from their PEGylated conjugates. The present study characterizes the partition behaviors of native RNase A and α‐Lac and their mono and di‐PEGylated conjugates on polyethylene glycol (PEG)—potassium phosphate ATPS. RESULTS: A potential strategy to separate unreacted native protein from its PEGylated species was established based upon the partition behavior of the species. The effect of PEG molecular weight (400–8000 g mol?1), tie‐line length (15–45% w/w) and volume ratio (VR; 0.33, 1.00 and 3.00) on native and PEGylated proteins partition behavior was studied. The use of ATPS constructed with high PEG molecular weight (8000 g mol?1), tie‐line lengths of 25 and 35% w/w, and VR values of 1.0 and 3.0 allowed the selective fractionation of native RNase A and α‐Lactalbumin, respectively, from their PEGylated conjugates on opposite phases. Such conditions resulted in an RNase A bottom phase recovery of 99%, while 98% and 88% of mono and di‐PEGylated conjugates, respectively were recovered at the top phase. For its part, α‐Lac had a bottom phase recovery of 92% while its mono and di‐PEGylated conjugates were recovered at the top phase with yields of 77% and 76%, respectively. CONCLUSIONS: The results reported here demonstrate the potential application of ATPS for the fractionation of PEGylated conjugates from their unreacted precursors. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Assemble & chelate : Click chemistry enables the efficient and selective synthesis of structurally diverse conjugates containing a central di‐1,2,3‐triazole chelator for complexation with [99mTc(CO)3]+. Use of appropriate building blocks allows the modulation of pharmacological relevant characteristics of the conjugate, or the introduction of secondary probes suitable for imaging modalities other than single photon emission computed tomography (SPECT).

  相似文献   


17.
Overexpression of the gastrin‐releasing peptide receptor (GRPR) in a variety of human carcinomas has provided a means of diagnosis and treatment. Previously we reported a metabolically stable (NαHis)Ac‐βAla‐βAla‐[Cha13,Nle14]BBS(7–14) analogue with high affinity for the GRPR. We have also shown that the biodistribution pattern of this fairly lipophilic, radiolabeled peptide can be enhanced by glycation, which is easily carried out by CuI‐catalyzed cycloaddition. Herein, we further elaborate this “click approach” in the synthesis of a new series of triazole‐based chelating systems as alternatives to the (NαHis)Ac chelator for labeling with the 99mTc(CO)3 core. The bombesin analogues, containing these new chelating systems, were evaluated with regard to their synthesis and in vitro and in vivo properties, and were compared with their (NαHis)Ac counterparts. The influence of the chelator on biodistribution properties was less than that of glycation, which clearly improved the tumor‐to‐background ratios.  相似文献   

18.
The direct organocatalytic enantioselective epoxidation of α,β‐unsaturated aldehydes with different peroxides is presented. Proline, chiral pyrrolidine derivatives, and amino acid‐derived imidazolidinones catalyze the asymmetric epoxidation of α,β‐unsaturated aldehydes. In particular, protected commercially available α,α‐diphenyl‐ and α,α‐di(β‐naphthyl)‐2‐prolinols catalyze the asymmetric epoxidation reactions of α,β‐unsaturated aldehydes with high diastereo‐ and enantioselectivities to furnish the corresponding 2‐epoxy aldehydes in high yield with up to 97:3 dr and 98 % ee. The use of non‐toxic catalysts, water and hydrogen peroxide, urea hydroperoxide or sodium percarbonate as the oxygen sources could make this reaction environmentally benign. In addition, one‐pot direct organocatalytic asymmetric tandem epoxidation‐Wittig reactions are described. The reactions were highly diastereo‐ and enantioselective and provide a rapid access to 2,4‐diepoxy aldehydes. Moreover, a highly stereoselective one‐pot organocatalytic asymmetric cascade epoxidation‐Mannich reaction, which proceeds via the combination of iminium and enamine activation, is presented. The mechanism and stereochemistry of the amino acid‐ and chiral pyrrolidine‐catalyzed direct asymmetric epoxidation of α,β‐unsaturated aldehydes are also discussed.  相似文献   

19.
Enkephalin peptides are thought to be suitable vectors for the passage of the blood–brain barrier (BBB). Modifications that do not alter the amino acid sequence are often used to improve the permeation through living membrane systems. As a new type of modification we introduce organometallic compounds, in particular ferrocene carboxylic acid. Derivatives of [Leu5]enkephalin were synthesised and labelled with organometallic compounds by using solid‐phase synthesis techniques. All new metal–peptide bioconjugates were comprehensively characterised by HPLC, NMR spectroscopy and mass spectrometry and found to be at least 95 % pure. For the first time, permeation coefficients in a BBB model for organometal–peptide derivatives were determined in this work. The uptake and localisation of fluorescein‐labelled enkephalins was monitored by fluorescence microscopy on three cancer cell lines. Octanol/H2O partition coefficients of the compounds were measured by HPLC. The introduction of the organometallic moiety enhances the uptake into cells and the permeation coefficient of [Leu5]‐enkephalin. This could be due to an increase in lipophilicity caused by the organometallic label. The metal–peptide conjugates were found to be nontoxic up to mM concentrations. The low cytotoxicity encourages further experiments that could take advantage of the selectivity of enkephalin derivatives for opioid receptors.  相似文献   

20.
Highly soluble polyaniline was synthesized from a newly designed aniline derivative, namely 2‐[2‐chloro‐1‐methylbut‐2‐en‐1‐yl]aniline. The corresponding polyanilines, PClPA‐HA, PClPA‐SA, PClPA‐NA and PClPA‐PA, were characterized by means of 1H NMR, 13C NMR, high resolution mass spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy and SEM images. The elemental analysis and electrical conductivity of the polymers are also presented. It is shown that the molecular weight of the polymers obtained depends on the method of synthesis. Spectroscopic studies confirmed the emeraldine form of the polyaniline derivatives. In the work, the dependence of the current passing through resistive structures based on thin poly[2‐(2‐chloro‐1‐methylbut‐2‐en‐1‐yl)aniline] films on the relative humidity of air was studied. The results of the studies showed the prospects of using thin polymer films in the design of chemical sensors. © 2020 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号