首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 1‐methyl‐1H‐indole–pyrazoline hybrids were designed, synthesized, and biologically evaluated as potential tubulin polymerization inhibitors. Among them, compound e19 [5‐(5‐bromo‐1‐methyl‐1H‐indol‐3‐yl)‐3‐(3,4,5‐trimethoxyphenyl)‐4,5‐dihydro‐1H‐pyrazole‐1‐carboxamide] showed the most potent inhibitory effect on tubulin assembly (IC50=2.12 μm ) and in vitro growth inhibitory activity against a panel of four human cancer cell lines (IC50 values of 0.21–0.31 μm ). Further studies confirmed that compound e19 can induce HeLa cell apoptosis, cause cell‐cycle arrest in G2/M phase, and disrupt the cellular microtubule network. These studies, along with molecular docking and 3D‐QSAR modeling, provide an important basis for further optimization of compound e19 as a potential anticancer agent.  相似文献   

2.
Two analogues of the discontinued tumor vascular‐disrupting agent verubulin (Azixa®, MPC‐6827, 1 ) featuring benzo‐1,4‐dioxan‐6‐yl (compound 5 a ) and N‐methylindol‐5‐yl (compound 10 ) residues instead of the para‐anisyl group on the 4‐(methylamino)‐2‐methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single‐digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind=?9.8 kcal mol?1) than verubulin (Ebind=?8.3 kcal mol?1), 10 suppressed the formation of vessel‐like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular‐disrupting effects that led to hemorrhages and extensive central necrosis in the tumor.  相似文献   

3.
As part of our research projects to identify new chemical entities of biological interest, we developed a synthetic approach and the biological evaluation of (7‐aryl‐1,5‐naphthyridin‐4‐yl)ureas as a novel class of Aurora kinase inhibitors for the treatment of malignant diseases based on pathological cell proliferation. 1,5‐Naphthyridine derivatives showed excellent inhibitory activities toward Aurora kinases A and B, and the most active compound, 1‐cyclopropyl‐3‐[7‐(1‐methyl‐1H‐pyrazol‐4‐yl)‐1,5‐naphthyridin‐4‐yl]urea ( 49 ), displayed IC50 values of 13 and 107 nM against Aurora kinases A and B, respectively. In addition, the selectivity toward a panel of seven cancer‐related protein kinases was highlighted. In vitro ADME properties were also determined in order to rationalize the difficulties in correlating antiproliferative activity with Aurora kinase inhibition. Finally, the good safety profile of these compounds imparts promising potential for their further development as anticancer agents.  相似文献   

4.
A series of chalcone conjugates featuring the imidazo[2,1‐b]thiazole scaffold was designed, synthesized, and evaluated for their cytotoxic activity against five human cancer cell lines (MCF‐7, A549, HeLa, DU‐145 and HT‐29). These new hybrid molecules have shown promising cytotoxic activity with IC50 values ranging from 0.64 to 30.9 μM . Among them, (E)‐3‐(6‐(4‐fluorophenyl)‐2,3‐bis(4‐methoxyphenyl)imidazo[2,1‐b]thiazol‐5‐yl)‐1‐(pyridin‐2‐yl)prop‐2‐en‐1‐one ( 11 x ) showed potent antiproliferative activity with IC50 values ranging from 0.64 to 1.44 μM in all tested cell lines. To investigate the mechanism of action, the detailed biological aspects of this promising conjugate ( 11 x ) were carried out on the A549 lung cancer cell line. The tubulin polymerization assay and immunofluoresence analysis results suggest that this conjugate effectively inhibits microtubule assembly in A549 cells. Flow cytometric analysis revealed that this conjugate induces cell‐cycle arrest in the G2/M phase and leads to apoptotic cell death. This was further confirmed by Hoechst staining, activation of caspase‐3, DNA fragmentation analysis, and Annexin V–FITC assay. Moreover, molecular docking studies indicated that this conjugate ( 11 x) interacts and binds efficiently with the tubulin protein.  相似文献   

5.
In this study we explored the pharmaceutically underexploited ATPase domain of DNA gyrase (GyrB) as a potential platform for developing novel agents that target Mycobacterium tuberculosis. In this effort a combination of ligand‐ and structure‐based pharmacophore modeling was used to identify structurally diverse small‐molecule inhibitors of the mycobacterial GyrB domain based on the crystal structure of the enzyme with a pyrrolamide inhibitor (PDB ID: 4BAE ). Pharmacophore modeling and subsequent in vitro screening resulted in an initial hit compound 5 [(E)‐5‐(5‐(2‐(1H‐benzo[d]imidazol‐2‐yl)‐2‐cyanovinyl)furan‐2‐yl)isophthalic acid; IC50=4.6±0.1 μm ], which was subsequently tailored through a combination of molecular modeling and synthetic chemistry to yield the optimized lead compound 24 [(E)‐3‐(5‐(2‐cyano‐2‐(5‐methyl‐1H‐benzo[d]imidazol‐2‐yl)vinyl)thiophen‐2‐yl)benzoic acid; IC50=0.3±0.2 μm ], which was found to display considerable in vitro efficacy against the purified GyrB enzyme and potency against the H37Rv strain of M. tuberculosis. Structural handles were also identified that will provide a suitable foundation for further optimization of these potent analogues.  相似文献   

6.
Checkpoint kinase 1 (CHK1) is a central component in DNA damage response and has emerged as a target for antitumor therapeutics. Herein, we describe the design, synthesis, and biological evaluation of a novel series of potent diaminopyrimidine CHK1 inhibitors. The compounds exhibited moderate to potent CHK1 inhibition and could suppress the proliferation of malignant hematological cell lines. The optimized compound 13 had a CHK1 IC50 value of 7.73±0.74 nM, and MV-4-11 cells were sensitive to it (IC50=0.035±0.007 μM). Furthermore, compound 13 was metabolically stable in mouse liver microsomes in vitro and displayed moderate oral bioavailability in vivo. Moreover, treatment of MV-4-11 cells with compound 13 for 2 h led to robust inhibition of CHK1 autophosphorylation on serine 296. Based on these biochemical results, we consider compound 13 to be a promising CHK1 inhibitor and potential anticancer therapeutic agent.  相似文献   

7.
Herein we report the discovery of compound 6 [KST016366; 4‐((2‐(3‐(4‐((4‐ethylpiperazin‐1‐yl)methyl)‐3‐(trifluoromethyl)phenyl)ureido)benzo[d]thiazol‐6‐yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A . In vitro anticancer evaluation of 6 showed substantial broad‐spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K‐562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar‐level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL‐1 (wild‐type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.  相似文献   

8.
Novel carbazole aminoalcohols were designed and synthesized as anticancer agents. Among them, alkylamine‐chain‐substituted compounds showed the most promising antiproliferative activity, with IC50 values in the single‐digit micromolar range against two human tumor cell lines. Topoisomerase I (topo I) is likely to be one of the targets of these compounds. Results of comet assays and molecular docking indicate that the representative compounds may act as topo I poisons, causing single‐strand DNA damage by stabilizing the topo I–DNA cleavage complex. In particular, the most potent compound, 1‐(butylamino)‐3‐(3,6‐dichloro‐9H‐carbazol‐9‐yl)propan‐2‐ol ( 6 ), was shown to be able to induce G2‐phase cell‐cycle arrest and apoptosis in HeLa cells.  相似文献   

9.
Several 2‐anilino‐3‐aroylquinolines were designed, synthesized, and screened for their cytotoxic activity against five human cancer cell lines: HeLa, DU‐145, A549, MDA‐MB‐231, and MCF‐7. Their IC50 values ranged from 0.77 to 23.6 μm . Among the series, compounds 7 f [(4‐fluorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] and 7 g [(4‐chlorophenyl)(2‐((4‐fluorophenyl)amino)quinolin‐3‐yl)methanone] showed remarkable antiproliferative activity against human lung cancer and prostate cancer cell lines. The IC50 values for inhibiting tubulin polymerization were 2.24 and 2.10 μm for compounds 7 f and 7 g , respectively, and were much lower than that of the reference compound E7010 [N‐(2‐(4‐hydroxyphenylamino)pyridin‐3‐yl)‐4‐methoxybenzenesulfonamide]. Furthermore, flow cytometric analysis revealed that these compounds arrest the cell cycle at the G2/M phase, leading to apoptosis. Apoptosis was also confirmed by mitochondrial membrane potential, Annexin V–FITC assay, and intracellular ROS generation. Immunohistochemistry, western blot, and tubulin polymerization assays showed that these compounds disrupt tubulin polymerization. Molecular docking studies revealed that these compounds bind efficiently to β‐tubulin at the colchicine binding site.  相似文献   

10.
A series of 3,5‐bis(benzylidene)‐4‐piperidones 3 were converted into the corresponding 3,5‐bis(benzylidene)‐1‐phosphono‐4‐piperidones 5 via diethyl esters 4 . The analogues in series 4 and 5 displayed marked growth inhibitory properties toward human Molt 4/C8 and CEM T‐lymphocytes as well as murine leukemia L1210 cells. In general, the N‐phosphono compounds 5 , which are more hydrophilic than the analogues in series 3 and 4 , were the most potent cluster of cytotoxins, and, in particular, 3,5‐bis‐(2‐nitrobenzylidene)‐1‐phosphono‐4‐piperidone 5 g had an average IC50 value of 34 nM toward the two T‐lymphocyte cell lines. Four of the compounds displayed potent cytotoxicity toward a panel of nearly 60 human tumor cell lines, and nanomolar IC50 values were observed in a number of cases. The mode of action of 5 g includes the induction of apoptosis and inhibition of cellular respiration. Most of the members of series 4 as well as several analogues in series 5 are potent multi‐drug resistance (MDR) reverting compounds. Various correlations were noted between certain molecular features of series 4 and 5 and cytotoxic properties, affording some guidelines in expanding this study.  相似文献   

11.
4‐{[(4‐Cyanophenyl)(4H‐1,2,4‐triazol‐4‐yl)amino]methyl}phenyl sulfamate and its ortho‐halogenated (F, Cl, Br) derivatives are first‐generation dual aromatase and sulfatase inhibitors (DASIs). Structure–activity relationship studies were performed on these compounds, and various modifications were made to their structures involving relocation of the halogen atom, introduction of more halogen atoms, replacement of the halogen with another group, replacement of the methylene linker with a difluoromethylene linker, replacement of the para‐cyanophenyl ring with other ring structures, and replacement of the triazolyl group with an imidazolyl group. The most potent in vitro DASI discovered is an imidazole derivative with IC50 values against aromatase and steroid sulfatase in a JEG‐3 cell preparation of 0.2 and 2.5 nM , respectively. The parent phenol of this compound inhibits aromatase with an IC50 value of 0.028 nM in the same assay.  相似文献   

12.
A series of benzo[b]furans was synthesized with modification at the 5‐position of the benzene ring by introducing C‐linked substituents (aryl, alkenyl, alkynyl, etc.). These compounds were evaluated for their antiproliferative activities, inhibition of tubulin polymerization, and cell‐cycle effects. Some compounds in this series displayed excellent activity in the nanomolar range against lung cancer (A549) and renal cell carcinoma (ACHN) cancer cell lines. (6‐Methoxy‐5‐((4‐methoxyphenyl)ethynyl)‐3‐methylbenzofuran‐2‐yl)(3,4,5‐trimethoxyphenyl)methanone ( 26 ) and (E)‐3‐(6‐methoxy‐3‐methyl‐2‐(1‐(3,4,5‐trimethoxyphenyl)vinyl)benzofuran‐5‐yl)prop‐2‐en‐1‐ol ( 36 ) showed significant activity in the A549 cell line, with IC50 values of 0.08 and 0.06 μM , respectively. G2/M cell‐cycle arrest and subsequent apoptosis was observed in the A549 cell line after treatment with these compounds. The most active compound in this series, 36 , also inhibited tubulin polymerization with a value similar to that of combretastatin A‐4 (1.95 and 1.86 μM , respectively). Furthermore, detailed biological studies such as Hoechst 33258 staining, DNA fragmentation and caspase‐3 assays, and western blot analyses with the pro‐apoptotic protein Bax and the anti‐apoptotic protein Bcl‐2 also suggested that these compounds induce cell death by apoptosis. Molecular docking studies indicated that compound 36 interacts and binds efficiently with the tubulin protein.  相似文献   

13.
4‐Nitrobezoyl chloride (2) was reacted with isoeugenol in chloroform in the presence of triethyl amine and ester (4) was obtained in high yield. Ester (4) was reacted with SnCl2·2H2O to give amine‐ester (5), and subsequently was reacted with trimellitic anhydride (6) and novel isoeugenol ester‐imide derivative (7), as a new monomer was obtained in quantitative yield. Compound (7) was characterized by high‐field 1H–NMR, IR, and elemental analysis and then was used for the preparation of model compound (9) and polymerization reactions. 4‐Phenyl‐1,2,4‐triazoline‐3,5‐dione (PhTD) (8) was allowed to react with compound (7). The reaction is very fast and gives only one double adduct (9) via Diels–Alder and ene pathways in excellent yield. The polymerization reactions of novel monomer (7) with bistriazolinediones [bis(p‐3,5‐dioxo‐1,2,4‐triazolin‐4‐ylphenyl)methane (10) and 1,6‐bis(3,5‐dioxo‐1,2,4‐triazolin‐4‐yl)hexane (11)] were carried out in N,N‐dimethylacetamide (DMAc) at room temperature. The reactions are exothermic, fast, and gave novel heterocyclic polyimides (12) and (13) via repetitive Diels–Alder‐ene polyaddition reactions. Some structural characterization and physical properties of these novel heterocyclic polyimides are reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1716–1725, 2001  相似文献   

14.
P‐glycoprotein (P‐gp)‐mediated multidrug resistance (MDR) is a major obstacle for successful cancer chemotherapy. Based on our previous study, 17 novel compounds with the 6,7‐dimethoxy‐2‐{2‐[4‐(1H‐1,2,3‐triazol‐1‐yl)phenyl]ethyl}‐1,2,3,4‐tetrahydroisoquinoline scaffold were designed and synthesized. Among them, 2‐[(1‐{4‐[2‐(6,7‐dimethoxy‐3,4‐dihydroisoquinolin‐2(1H)‐yl)ethyl]phenyl}‐1H‐1,2,3‐triazol‐4‐yl)methoxy]‐N‐(p‐tolyl)benzamide (compound 7 h ) was identified as a potent modulator of P‐gp‐mediated MDR, with high potency (EC50=127.5±9.1 nM ), low cytotoxicity (TI>784.3), and long duration (>24 h) in reversing doxorubicin (DOX) resistance in K562/A02 cells. Compound 7 h also enhanced the effects of other MDR‐related cytotoxic agents (paclitaxel, vinblastine, and daunorubicin), increased the accumulation of DOX and blocked P‐gp‐mediated rhodamine 123 efflux function in K562/A02 MDR cells. Moreover, 7 h did not have any effect on cytochrome (CYP3A4) activity. These results indicate that 7 h is a relatively safe modulator of P‐gp‐mediated MDR that has good potential for further development.  相似文献   

15.
The design and synthesis of a series of bicyclic ring containing dual aromatase–sulfatase inhibitors (DASIs) based on the aromatase inhibitor (AI) 4‐[(4‐bromobenzyl)(4H‐1,2,4‐triazol‐4‐yl)amino]benzonitrile are reported. Biological evaluation with JEG‐3 cells revealed structure–activity relationships. The X‐ray crystal structure of sulfamate 23 was determined, and selected compounds were docked into the aromatase and steroid sulfatase (STS) crystal structures. In the sulfamate‐containing series, compounds containing a naphthalene ring are both the most potent AI ( 39 , IC50 AROM=0.25 nM ) and the best STS inhibitor ( 31 , IC50 STS=26 nM ). The most promising DASI is 39 (IC50 AROM=0.25 nM , IC50 STS=205 nM ), and this was evaluated orally in vivo at 10 mg kg?1, showing potent inhibition of aromatase (93 %) and STS (93 %) after 3 h. Potent aromatase and STS inhibition can thus be achieved with a DASI containing a bicyclic ring system; development of such a DASI could provide an attractive new option for the treatment of hormone‐dependent breast cancer.  相似文献   

16.
In recent years there has been a clear consensus that neurodegenerative conditions can be better treated through concurrent modulation of different targets. Herein we report that combined inhibition of transglutaminase 2 (TG2) and histone deacetylases (HDACs) synergistically protects against toxic stimuli mediated by glutamate. Based on these findings, we designed and synthesized a series of novel dual TG2–HDAC binding agents. Compound 3 [(E)‐N‐hydroxy‐5‐(3‐(4‐(3‐oxo‐3‐(pyridin‐3‐yl)prop‐1‐en‐1‐yl)phenyl)thioureido)pentanamide] emerged as the most interesting of the series, being able to inhibit TG2 and HDACs both in vitro (TG2 IC50=13.3±1.5 μm , HDAC1 IC50=3.38±0.14 μm , HDAC6 IC50=4.10±0.13 μm ) and in cell‐based assays. Furthermore, compound 3 does not exert any toxic effects in cortical neurons up to 50 μm and protects neurons against toxic insults induced by glutamate (5 mm ) with an EC50 value of 3.7±0.5 μm .  相似文献   

17.
A series of imidazo[2,1‐b][1,3,4]thiadiazole‐linked oxindoles composed of an A, B, C and D ring system were synthesized and investigated for anti‐proliferative activity in various human cancer cell lines; test compounds were variously substituted at rings C and D. Among them, compounds 7 ((E)‐5‐fluoro‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)‐imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), 11 ((E)‐3‐((6‐p‐tolyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one), and 15 ((E)‐6‐chloro‐3‐((6‐phenyl‐2‐(3,4,5‐trimethoxyphenyl)imidazo[2,1‐b][1,3,4]thiadiazol‐5‐yl)methylene)indolin‐2‐one) exhibited potent anti‐proliferative activity. Treatment with these three compounds resulted in accumulation of cells in G2/M phase, inhibition of tubulin assembly, and increased cyclin‐B1 protein levels. Compound 7 displayed potent cytotoxicity, with an IC50 range of 1.1–1.6 μM , and inhibited tubulin polymerization with an IC50 value (0.15 μM ) lower than that of combretastatin A‐4 (1.16 μM ). Docking studies reveal that compounds 7 and 11 bind with αAsn101, βThr179, and βCys241 in the colchicine binding site of tubulin.  相似文献   

18.
A group of cyclooxygenase‐2 (COX‐2)‐specific fluorescent cancer biomarkers were synthesized by linking the anti‐inflammatory drugs ibuprofen, (S)‐naproxen, and celecoxib to the 7‐nitrobenzofurazan (NBD) fluorophore. In vitro COX‐1/COX‐2 inhibition studies indicated that all of these fluorescent conjugates are COX‐2 inhibitors (IC50 range: 0.19–23.0 μM ) with an appreciable COX‐2 selectivity index (SI≥4.3–444). In this study the celecoxib–NBD conjugate N‐(2‐((7‐nitrobenzo[c][1,2,5]oxadiazol‐4‐yl)amino)ethyl)‐4‐(5‐(p‐tolyl)‐3‐(trifluoromethyl)‐1H‐pyrazol‐1‐yl)benzenesulfonamide ( 14 ), which displayed the highest COX‐2 inhibitory potency and selectivity (COX‐2 IC50=0.19 μM ; SI=443.6), was identified as an impending COX‐2‐specific biomarker for the fluorescence imaging of cancer using a COX‐2‐expressing human colon cancer cell line (HCA‐7).  相似文献   

19.
Concurrent inhibition of aromatase and steroid sulfatase (STS) may provide a more effective treatment for hormone‐dependent breast cancer than monotherapy against individual enzymes, and several dual aromatase–sulfatase inhibitors (DASIs) have been reported. Three aromatase inhibitors with sub‐nanomolar potency, better than the benchmark agent letrozole, were designed. To further explore the DASI concept, a new series of letrozole‐derived sulfamates and a vorozole‐based sulfamate were designed and biologically evaluated in JEG‐3 cells to reveal structure–activity relationships. Amongst achiral and racemic compounds, 2‐bromo‐4‐(2‐(4‐cyanophenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)ethyl)phenyl sulfamate is the most potent DASI (aromatase: IC50=0.87 nM ; STS: IC50=593 nM ). The enantiomers of the phenolic precursor to this compound were separated by chiral HPLC and their absolute configuration determined by X‐ray crystallography. Following conversion to their corresponding sulfamates, the S‐(+)‐enantiomer was found to inhibit aromatase and sulfatase most potently (aromatase: IC50=0.52 nM ; STS: IC50=280 nM ). The docking of each enantiomer and other ligands into the aromatase and sulfatase active sites was also investigated.  相似文献   

20.
Cytosolic phospholipase A2α (cPLA2α) may play a critical role in neuropsychiatric and neurodegenerative disorders associated with oxidative stress and neuroinflammation. An effective PET radioligand for imaging cPLA2α in living brain might prove useful for biomedical research, especially on neuroinflammation. We selected four high‐affinity (IC50 2.1–12 nm ) indole‐5‐carboxylic acid‐based inhibitors of cPLA2α, namely 3‐isobutyryl‐1‐(2‐oxo‐3‐(4‐phenoxyphenoxy)propyl)‐1H‐indole‐5‐carboxylic acid ( 1 ); 3‐acetyl‐1‐(2‐oxo‐3‐(4‐(4‐(trifluoromethyl)phenoxy)phenoxy)propyl)‐1H‐indole‐5‐carboxylic acid ( 2 ); 3‐(3‐methyl‐1,2,4‐oxadiazol‐5‐yl)‐1‐(2‐oxo‐3‐(4‐phenoxyphenoxy)propyl)‐1H‐indole‐5‐carboxylic acid ( 3 ); and 3‐(3‐methyl‐1,2,4‐oxadiazol‐5‐yl)‐1‐(3‐(4‐octylphenoxy)‐2‐oxopropyl)‐1H‐indole‐5‐carboxylic acid ( 4 ), for labelling in carboxyl position with carbon‐11 (t1/2=20.4 min) to provide candidate PET radioligands for imaging brain cPLA2α. Compounds [11C] 1 – 4 were obtained for intravenous injection in adequate overall yields (1.1–5.5 %) from cyclotron‐produced [11C]carbon dioxide and with moderate molar activities (70–141 GBq μmol?1) through the use of Pd0‐mediated [11C]carbon monoxide insertion on iodo precursors. Measured logD7.4 values were within a narrow moderate range (1.9–2.4). After intravenous injection of [11C] 1 – 4 in mice, radioactivity uptakes in brain peaked at low values (≤0.8 SUV) and decreased by about 90 % over 15 min. Pretreatments of the mice with high doses of the corresponding non‐radioactive ligands did not alter brain time–activity curves. Brain uptakes of radioactivity after administration of [11C] 1 to wild‐type and P‐gp/BCRP dual knock‐out mice were similar (peak 0.4 vs. 0.5 SUV), indicating that [11C] 1 and others in this structural class, are not substrates for efflux transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号