首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an approach to the stability analysis of a class of nonlinear interconnected continuous‐time singular systems with arbitrary switching signals. This class of interconnected subsystems consists of unknown but bounded state delay and nonlinear terms, and each subsystem can be globally stable, unstable, or locally stable. By constructing a new Lyapunov‐like Krasovskii functional, sufficient conditions are derived and formulated to check the asymptotic (exponential) stability of such systems with arbitrary switching signals. Then, some new general criteria for asymptotic (exponential) stability with average dwell‐time switching signals are also established. The theoretical developments are demonstrated by two numerical simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the exponential stability problem is investigated for a class of discrete‐time singular switched systems with time‐varying delay. By using a new Lyapunov functional and average dwell time scheme, a delay‐dependent sufficient condition is established in terms of linear matrix inequalities for the considered system to be regular, causal, and exponentially stable. Different from the existing results, in the considered systems the corresponding singular matrices do not need to have the same rank. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

3.
This paper considers a class of stochastic systems referred to as stochastic switched systems of neutral type with time‐varying delay, which combines switched systems with neutral stochastic systems. The systems consist of subsystems of two forms: (i) only stable subsystems and (ii) both stable subsystems and unstable subsystems. By establishing an integral inequality, the exponential stability in pth(p≥1)‐moment for such systems with only stable subsystems is first considered. Then, by using an average dwell time approach, the exponential stability in pth(p≥1)‐moment for the second form is addressed. An important finding of this study is that when the average dwell time is chosen to be sufficiently large and the total activation time of unstable subsystems is relatively small compared with that of stable subsystems, the exponential stability in pth(p≥1)‐moment for such systems can be guaranteed. Two major advantages of these new results are that the differentiability or continuity of the delay function is not required compared with the existing results in the literature, and the proposed approaches can be used to consider the case when the neutral item and the stochastic perturbation are simultaneously presented. An example is provided to verify the effectiveness and potential of the theoretic results obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Exponential stability and robust exponential stability relating to switched systems consisting of stable and unstable nonlinear subsystems are considered in this study. At each switching time instant, the impulsive increments which are nonlinear functions of the states are extended from switched linear systems to switched nonlinear systems. Using the average dwell time method and piecewise Lyapunov function approach, when the total active time of unstable subsystems compared to the total active time of stable subsystems is less than a certain proportion, the exponential stability of the switched system is guaranteed. The switching law is designed which includes the average dwell time of the switched system. Switched systems with uncertainties are also studied. Sufficient conditions of the exponential stability and robust exponential stability are provided for switched nonlinear systems. Finally, simulations show the effectiveness of the result.  相似文献   

5.
This paper presents the exponential stability of output‐based event‐triggered control for switched singular systems. An event‐triggered mechanism is introduced based on measure output, by employing the Lyapunov functional method and average dwell time approach, some sufficient conditions for exponential stability of the switched singular closed‐loop systems are derived. Furthermore, dynamic output feedback controller parameters are obtained. Lastly, a numerical example is given to illustrate the validity of the proposed solutions.  相似文献   

6.
The issue of exponential stability of a class of continuous-time switched nonlinear singular systems consisting of a family of stable and unstable subsystems with time-varying delay is considered in this paper. Based on the free-weighting matrix approach, the average dwell-time approach and by constructing a Lyapunov-like Krasovskii functional, delay-dependent sufficient conditions are derived and formulated to check the exponential stability of such systems in terms of linear matrix inequalities (LMIs). By checking the corresponding LMI conditions, the average dwell-time and switching signal conditions are obtained. This paper also highlights the relationship between the average dwell-time of the switched nonlinear singular time-delay system, its stability and the exponential convergence rate of differential and algebraic states. A numerical example shows the effectiveness of the proposed method.  相似文献   

7.
In this paper, the problem of delay‐dependent exponential H filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, a unified mode‐dependent average dwell time (MDADT) stability result is investigated, which could be applied to switched systems with an arbitrary combination of stable and unstable subsystems. Combined with MDADT analysis method, we classified subsystems into two categories: switching stable subsystems and switching unstable subsystems. State divergence caused by switching unstable subsystems could be compensated by activating switching stable subsystems for a sufficiently long time. Based on the above considerations, a new globally exponentially stability condition was proposed for discrete‐time switched linear systems. Under the premise of not resolving the LMIs, the MDADT boundary of the new stability condition is allowed to be readjusted according to the actual switching signal. Furthermore, the new stability result is a generalization of the previous one, which is more suitable for the case of more unstable subsystems. Some simulation results are given to show the advantages of the theoretic results obtained.  相似文献   

9.
This paper studies the exponential stabilization of switched discrete‐time systems whose subsystems are unstable. A new sufficient condition for the exponential stability of the class of systems is proposed. The result obtained is based on the determination of a lower bound of the maximum dwell time by virtue of the multiple Lyapunov functions method. The key feature is that the given stability condition does not need the value of the Lyapunov function to uniformly decrease at every switching instant. An example is provided to illustrate the effectiveness of the proposed result.  相似文献   

10.
Analytical computation methods are proposed for evaluating the minimum dwell time and the average dwell time guaranteeing the asymptotic stability of a discrete‐time switched linear system whose switchings are assumed to respect a given directed graph. The minimum and average dwell time can be found using the graph that governs the switchings, and the associated weights. This approach, which is used in a previous work for continuous‐time systems having non‐defective subsystems, has been adapted to discrete‐time switched systems and generalized to allow defective subsystems. Moreover, we present a novel method to improve the dwell time estimation in the case of bimodal switched systems. In this method, scaling algorithms to minimize the condition number have been used to give better minimum dwell time and average dwell time estimates.  相似文献   

11.
In this paper, we study the problem of dissipative analysis for a class of switched systems with time‐varying delays. Sufficient conditions for dissipativity are developed for a class of switching signals with average dwell time. These conditions express delay‐dependent exponential stability and are provided in terms of linear matrix inequalities (LMIs). It is shown that the derived results encompass some available results on ?? approach and arbitrary switching case. Numerical examples are given to illustrate the developed results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the problem of exponential stability and l1‐gain performance analysis for a class of discrete‐time switched positive singular systems with time‐varying delay. Firstly, a necessary and sufficient condition of positivity for the system is established by using the singular value decomposition method. Then by constructing an appropriate co‐positive Lyapunov functional and using the average dwell time scheme, we develop a sufficient delay‐dependent condition and identify a class of switching signals for the switched positive singular system to be exponentially stable and meet a prescribed l1‐gain performance level under the switching signal. Based on this condition, the decay rate of the system can be tuned and the optimal system performance level can be determined by solving a convex optimization problem. All of the criteria obtained in this paper are presented in terms of linear programming, which suggests a good scalability and applicability to high dimensional systems. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper deals with the exponential stability and asynchronous stabilization of continuous‐time switched systems. By delicately constructed piecewise Lyapunov‐like functions and the minimum dwell time switching method, exponential stability of the switched systems with stable or unstable subsystems is obtained. Based on the result of the stability, the problem of controller design of the switched systems under asynchronous switching is also solved, and the delay that causes asynchronous phenomena can be unbounded. The stability results and control laws of the switched systems are formulated in the form of linear matrix inequalities that are numerically feasible. Finally, two illustrative numerical examples are presented to show the effectiveness of the obtained theoretical results.  相似文献   

14.
ABSTRACT

This paper addresses the finite-time stability problem of linear switched singular systems with finite-time unstable subsystems. Dynamic decomposition techniques are used to transform such systems into equivalent one that is a reduced-order switched normal systems. Based on the mode-dependent average dwell time (MDADT) switching signal, new sufficient conditions are presented to guarantee the linear switched singular systems with finite-time unstable subsystems being finite-time stability, finite-time bounded and finite-time stabilization. Finally, a numerical example is employed to verify the efficiency of the preceding method.  相似文献   

15.
The stability properties of linear switched systems consisting of both Hurwitz stable and unstable subsystems are investigated by using piecewise Lyapunov functions incorporated with an average dwell time approach. It is shown that if the average dwell time is chosen sufficiently large and the total activation time ratio between Hurwitz stable and unstable subsystems is not smaller than a specified constant, then exponential stability of a desired degree is guaranteed. The above result is also extended to the case where nonlinear norm‐bounded perturbations exist.  相似文献   

16.
This paper deals with the problem of exponential H filtering for a class of continuous‐time switched linear system with interval time‐varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay‐derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H noise attenuation level. Based on the free‐weighting matrix approach and the average dwell technology, delay‐dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

This paper is devoted to study the stability of switched singular stochastic linear systems with both stable and unstable subsystems. By using the method of multiple Lyapunov functions and the notion of average dwell time, we provide sufficient conditions for the exponential mean-square stability of switched singular stochastic systems in terms of a proper switching rule and the linear matrix inequalities. An example is given to illustrate the effectiveness of the obtained results.  相似文献   

18.
This paper deals with the problems of passivity and passification for a class of discrete‐time switched stochastic systems with time‐varying delay. Based on the average dwell time approach, the piecewise Lyapunov function technique, and the free‐weighting matrix method, a new Lyapunov functional is proposed and sufficient conditions for mean‐square exponential stability and stochastic passivity are developed under average dwell time switching. Moreover, an estimate of state decay can be calculated in terms of linear matrix inequalities (LMIs). Then, the solvability condition for passification is established and the corresponding controller is designed. Two numerical examples are given to show the effectiveness of the proposed methods.  相似文献   

19.
In this article, we are concerned with the problem on input‐to‐state stability (ISS) for discrete‐time time‐varying switched delayed systems. Some Krasovskii and Razumikhin ISS criteria are provided by using the notions of uniformly asymptotically stable (UAS) function and mode‐dependent average dwell time (MDADT). With the help of the concept of UAS function, the advantage of our results in this article is that the coefficients of the first‐order difference inequalities for the mode‐dependent Krasovskii functionals and mode‐dependent Razumikhin functions are allowed to be time‐varying, mode‐dependent, and can even take both positive and negative values, and the whole switched system can be allowed to have both ISS subsystems and non‐ISS subsystems. With the aid of the notion of MDADT, each subsystem can have its own average dwell time. As an application, we also provide an ISS criterion for discrete‐time time‐varying switched delayed Hopfield neural networks with disturbance inputs. Numerical simulations verify the effectiveness of the established criteria.  相似文献   

20.
The problem of robust stability for switched linear systems with all the subsystems being unstable is investigated. Unlike the most existing results in which each switching mode in the system is asymptotically stable, the subsystems may be unstable in this paper. A necessary condition of stability for switched linear systems is first obtained with certain hypothesis. Then, under two assumptions, sufficient conditions of exponential stability for both deterministic and uncertain switched linear systems are presented by using the invariant subspace theory and average dwell time method. Moreover, we further develop multiple Lyapunov functions and propose a method for constructing multiple Lyapunov functions for the considered switched linear systems with certain switching law. Several examples are included to show the effectiveness of the theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号