首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The aim of this paper is to investigate the issue of real‐time reliability evaluation based on a general Wiener process‐based degradation model. With its mathematical tractability, the Wiener process with a linear drift has been widely used in the literature, to characterize the dynamics of the degradation process or its transformation. However, the nonlinear degradation process, which can't be properly linearized, exists in practice. The dynamics of such a degradation process can't be accurately captured by linear models. Here, a general Wiener process‐based degradation model is proposed, which covers a variety of Wiener process‐based models as its limiting cases. A two‐stage method is presented to estimate the unknown parameters. Two real‐time reliability evaluation procedures are presented for different conditions: one is the analytical evaluation procedure, and the other is the simulated evaluation procedure. It is shown that when new degradation information is available, the evaluation results can be adaptively updated. Moreover, to check out the proposed degradation model, a graphical method is provided. Finally, the validity of the proposed evaluation method is illustrated by a numerical example and two real‐world examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
With the increase of product reliability, collecting time‐to‐failure data is becoming difficult, and degradation‐based method has gained popularity. In this paper, a novel multi‐hidden semi‐Markov model is proposed to identify degradation and estimate remaining useful life of a system. Multiple fused features are used to describe the degradation process so as to improve the effectiveness and accuracy. The similarities of the features are depicted by a new variable combined with forward and backward variables to reduce computational effort. The degradation state is identified using modified Viterbi algorithm, in which linear function is adopted to describe the contribution of each feature to the state recognition. Subsequently, the remaining useful life can be forecasted by backward recursive equations. A case study is presented, and the results demonstrate the validity and effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Some life tests are terminated with few or no failures. In such cases, a recent approach is to obtain degradation measurements of product performance that may contain some useful information about product reliability. Generally degradation paths of products are modeled by a nonlinear regression model with random coefficients. If we can obtain the estimates of parameters under the model, then the time‐to‐failure distribution can be estimated. In some cases, the patterns of a few degradation paths are different from those of most degradation paths in a test. Therefore, this study develops a weighted method based on fuzzy clustering procedure to robust estimation of the underlying parameters and time‐to‐failure distribution. The method will be studied on a real data set. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
As a key aircraft component, hydraulic piston pumps must be developed with high reliability. However, collecting failure time data of such pumps for reliability analysis is a big challenge. To save testing time, performance degradation data obtained from degradation tests can be used for quick reliability estimation of hydraulic piston pumps. This paper proposes an engineering‐driven performance degradation analysis method considering the nature of mechanical wear of hydraulic piston pumps. First, the failure mechanism of a type of hydraulic piston pump is investigated. By taking into account the close relationship between the degradation rate and the failure mechanism, an inverse Gaussian (IG) process model with a variable rate is developed to describe the degradation behavior of the pump. Under this model, a Bayesian statistical method is developed for degradation data analysis. The corresponding procedure for model parameter estimation and reliability evaluation is also presented. The proposed degradation analysis method is illustrated using a real experimental data. The results show that the engineering‐driven approach is quite effective in evaluating the lifetime of the hydraulic piston pump and will improve the overall reliability of aircraft operation in the field.  相似文献   

5.
In reliability analysis, degradation test has been recognized as an effective method for high reliable products and complex systems when key performance indicators can be observed. Then, a reasonable degradation model becomes a key issue to guarantee a reasonable reliability assessment. Motivated by practical needs, this paper proposes a novel two‐stage degradation model considering the different dispersity regulations corresponding to the two stages. A maximum likelihood estimation (MLE) method for unknown parameters is established, and an initial guess procedure is given to improve the efficiency of optimization algorithm. Then, the reliability inference regarding the product population is discussed. A comprehensive simulation study is conducted to validate the proposed approach where the two‐stage Wiener process model is adopted as a reference for a better understanding. Finally, the constructed model is further verified by two real applications. Comparative results clearly demonstrate the reasonability and effectiveness of the proposed model.  相似文献   

6.
In this paper, we presented a continuous‐time Markov process‐based model for evaluating time‐dependent reliability indices of multi‐state degraded systems, particularly for some automotive subsystems and components subject to minimal repairs and negative repair effects. The minimal repair policy, which restores the system back to an “as bad as old” functioning state just before failure, is widely used for automotive systems repair because of its low cost of maintenance. The current study distinguishes with others that the negative repair effects, such as unpredictable human error during repair work and negative effects caused by propagated failures, are considered in the model. The negative repair effects may transfer the system to a degraded operational state that is worse than before due to an imperfect repair. Additionally, a special condition that a system under repair may be directly transferred to a complete failure state is also considered. Using the continuous‐time Markov process approach, we obtained the general solutions to the time‐dependent probabilities of each system state. Moreover, we also provided the expressions for several reliability measures include availability, unavailability, reliability, mean life time, and mean time to first failure. An illustrative numerical example of reliability assessment of an electric car battery system is provided. Finally, we use the proposed multi‐state system model to model a vehicle sub‐frame fatigue degradation process. The proposed model can be applied for many practical systems, especially for the systems that are designed with finite service life.  相似文献   

7.
Owing to release of software in multiple releases, code changes take place in software. Because of this added complexity in software, the testing team may be unable to correct the fault upon detection, leaving the actual fault to reside in the software, termed as imperfect debugging or there may be replacement of original fault by other fault, leading to error generation. Many other factors exist that affect the testing phase of software like strategies of testing, test cases, skill, efficiency, and learning of testing team. All these factors cannot be kept stable during the whole process of testing. They may change at any time moment causing the background processes to experience change, which is known as change‐point. Keeping all these critical testing environment factors under consideration, a new software reliability growth model has been proposed, which is derived from an non homogenous Poisson process (NHPP)based unified scheme for multi‐release two‐stage fault detection/observation and correction/removal software reliability models. The developed model is numerically illustrated on tandem data set for four releases.  相似文献   

8.
To ensure reliable operations, online reliability assessment based on the system monitoring is essential, especially for the critical machineries or components with high safety requirements. The real‐time reliability of the milling cutters in practice is one of the examples that decide the total manufacturing effectiveness and the quality of products. The research on how to best estimate cutters' reliability has gained popularity in recent years due to the need in prognostics and health management. The state space model (SSM), employed to recognize the underlying degradation state as a first order Markov chain, is widely used to model the residual life and reliability evaluation. In this paper, non‐linear and non‐Gaussian SSM are established based on the tool wear condition. The degrading tendency is predicted by the particle filter algorithm, and then the conditional reliability is calculated based on the degradation state and a pre‐set threshold. The effectiveness of this approach was proven by a real case study provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this paper is to investigate the issue of degradation modeling and reliability assessment for products under irregular time‐varying stresses. Conventional degradation models have been extensively used in the relevant literature to characterize degradation processes under deterministic stresses. However, the time‐varying stress, which may affect degradation processes, widely exists in field conditions. This paper extends the general degradation‐path model by considering the effects of time‐varying stresses. The new degradation‐path model captures influences of varying stresses on performance characteristics. A nonlinear least square method is used to estimate the unknown parameters of the proposed model. A bootstrap algorithm is adopted for computing the confidence intervals of the mean time to failure and percentiles of the failure‐time distribution. Finally, a case study of lithium‐ion cells is presented to validate the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) recording technique has recently received considerable attention and has been used in many studies on cognition and neurological disease. EEG‐fMRI simultaneous recording has the advantage of enabling the monitoring of brain activity with both high temporal resolution and high spatial resolution in real time. The successful removal of the ballistocardiographic (BCG) artifact from the EEG signal recorded during an MRI is an important prerequisite for real‐time EEG‐fMRI joint analysis. We have developed a new framework dedicated to BCG artifact removal in real‐time. This framework includes a new real‐time R‐peak detection method combining a k‐Teager energy operator, a thresholding detector, and a correlation detector, as well as a real‐time BCG artifact reduction procedure combining average artifact template subtraction and a new multi‐channel referenced adaptive noise cancelling method. Our results demonstrate that this new framework is efficient in the real‐time removal of the BCG artifact. The multi‐channel adaptive noise cancellation (mANC) method performs better than the traditional ANC method in eliminating the BCG residual artifact. In addition, the computational speed of the mANC method fulfills the requirements of real‐time EEG‐fMRI analysis. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 209–215, 2016  相似文献   

11.
The theory of network reliability has been applied to many complicated network structures, such as computer and communication networks, piping systems, electricity networks, and traffic networks. The theory is used to evaluate the operational performance of networks that can be modeled by probabilistic graphs. Although evaluating network reliability is an Non‐deterministic Polynomial‐time hard problem, numerous solutions have been proposed. However, most of them are based on sequential computing, which under‐utilizes the benefits of multi‐core processor architectures. This paper addresses this limitation by proposing an efficient strategy for calculating the two‐terminal (terminal‐pair) reliability of a binary‐state network that uses parallel computing. Existing methods are analyzed. Then, an efficient method for calculating terminal‐pair reliability based on logical‐probabilistic calculus is proposed. Finally, a parallel version of the proposed algorithm is developed. This is the first study to implement an algorithm for estimating terminal‐pair reliability in parallel on multi‐core processor architectures. The experimental results show that the proposed algorithm and its parallel version outperform an existing sequential algorithm in terms of execution time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Knowing the time of changes in mean and variance in a process is crucial for engineers to identify the special cause quickly and correctly. Because assignable causes may give rise to changes in mean and variance at the same time, monitoring the mean and variance simultaneously is required. In this paper, a mixture likelihood approach is proposed to detect shifts in mean and variance simultaneously in a normal process. We first transfer the change point model formulation into a mixture model and then employ the expectation and maximization algorithm to estimate the time of shifts in mean and variance simultaneously. The proposed method called EMCP (expectation and maximization change point) can be used in both phase I and II applications without the knowledge of in‐control process parameters. Moreover, EMCP can detect the time of multiple shifts and simultaneously produce the estimates of shifts in each individual segment. Numerical data and real datasets are employed to compare EMCP with the direct statistical maximum likelihood method without the use of mixture models. The experimental results show the superiority and effectiveness of the proposed EMCP. The outperformance of EMCP in detecting the time of small shifts is particularly important and beneficial for engineers to identify assignable causes rapidly and accurately in phase II applications in which small shifts occur more often and hence lead to a large average run length. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we propose an offline and online machine health assessment (MHA) methodology composed of feature extraction and selection, segmentation‐based fault severity evaluation, and classification steps. In the offline phase, the best representative feature of degradation is selected by a new filter‐based feature selection approach. The selected feature is further segmented by utilizing the bottom‐up time series segmentation to discriminate machine health states, ie, degradation levels. Then, the health state fault severity is extracted by a proposed segment evaluation approach based on within segment rate‐of‐change (RoC) and coefficient of variation (CV) statistics. To train supervised classifiers, a priori knowledge about the availability of the labeled data set is needed. To overcome this limitation, the health state fault‐severity information is used to label (eg, healthy, minor, medium, and severe) unlabeled raw condition monitoring (CM) data. In the online phase, the fault‐severity classification is carried out by kernel‐based support vector machine (SVM) classifier. Next to SVM, the k‐nearest neighbor (KNN) is also used in comparative analysis on the fault severity classification problem. Supervised classifiers are trained in the offline phase and tested in the online phase. Unlike to traditional supervised approaches, this proposed method does not require any a priori knowledge about the availability of the labeled data set. The proposed methodology is validated on infield point machine sliding‐chair degradation data to illustrate its effectiveness and applicability. The results show that the time series segmentation‐based failure severity detection and SVM‐based classification are promising.  相似文献   

14.
For a period of mission time, only zero‐failure data can be obtained for high‐quality long‐life products. In the case of zero‐failure data reliability assessment, the point estimates and confidence interval estimates of distribution parameters cannot be obtained simultaneously by the current reliability assessment models, and the credibility of the assessment results may be reduced if they are obtained at the same time. A new model is proposed for consistency problem in this paper. In the proposed model, the point estimates of reliability can be obtained by the lifetime probability distribution derived from matching distribution curve method, while the confidence interval estimates of reliability can be obtained by using new samples generated from the lifetime probability distribution according to parameter bootstrap method. By analyzing the zero‐failure data of the torque motors after real operation, the results show that the new model not only meets the requirements of reliability assessment but also improves the accuracy of reliability interval estimation.  相似文献   

15.
16.
This article proposes a reliability‐based design optimization methodology by incorporating probabilistic degradation in the fatigue resistance of material. The probabilistic damage accumulation is treated as a measure of degradation in the fatigue resistance of material and modeled as nonstationary probabilistic process to capture the time‐dependent distribution parameters of damage accumulation. The proposed probabilistic damage accumulation model is then incorporated into reliability‐based design optimization model by building a dynamic reliability model inferred from the stress–strength interference model. The proposed approach facilitates to capture the dynamic degradation behavior while optimizing design variables at an early design stage to improve the overall reliability of product. The applicability of the proposed approach is demonstrated using suitable examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we investigate service‐level assurance in high‐availability multi‐unit systems using the M‐for‐N backup scheme. M‐for‐N shared protection (backup) systems with priority control (i.e. prioritized protection switching and prioritized re‐housing of repaired units) can be applied to actual telecommunication devices that are subject to service‐level agreement (SLA) involving reliability measures. A priority level is assigned to each end user in such a system and the switching and unit re‐housing process is subject to the priority. The main contribution of this paper is to give a practical computation method of the user‐perceived availability under the priority control. Our case studies for real telecommunication systems reveal the effect of priority control on the user‐perceived availability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
19.
We propose a novel face tracking framework, the three‐stage model, for robust face tracking against interruptions from face‐like blobs. For robust face tracking in real‐time, we considered two critical factors in the construction of the proposed model. One factor is the exclusion of background information in the initialization of the target model, the extraction of the target candidate region, and the updating of the target model. The other factor is the robust estimation of face movement under various environmental conditions. The proposed three‐stage model consists of a preattentive stage, an assignment stage, and a postattentive stage with a prerecognition phase. The model is constructed by means of effective integration of optimum cues that are selected in consideration of the trade‐off between true positives and false positives of face classification based on a context‐dependant type of categorization. The experimental results demonstrate that the proposed tracking method improves the performance of the real‐time face tracking process in terms of success rates and with robustness against interruptions from face‐like blobs. © 2008 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 17, 321–327, 2007  相似文献   

20.
Hardware‐software co‐design systems abound in diverse modern application areas such as automobile control, telecommunications, big data processing, and cloud computing. Existing works on reliability modeling of the co‐design systems have mostly assumed that hardware and software subsystems behave independently of each other. However, these two subsystems may have significant interactions in practice. In this paper, an analytical approach based on paths and integrals is proposed to analyze reliability of nonrepairable hardware‐software co‐design systems considering interactions between hardware and software during the system performance degradation and failure process. The proposed approach is verified using the Markov‐based method. As demonstrated by case studies on systems without and with warm standby sparing, the proposed approach is applicable to arbitrary types of time‐to‐failure or degradation distributions. Effects of different transition and fault detection/recovery parameters on system performance are also investigated through examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号