首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
利用SEM、TEM等检测方法研究了回火工艺参数对感应加热淬火10Cr Ni3Mo V球扁钢组织和性能的影响。结果表明,感应淬火后,10Cr Ni3Mo V球扁钢淬火组织为细小的板条马氏体和少量贝氏体。随着回火温度的升高,10Cr Ni3Mo V钢球头与腹板处的强度与硬度单调下降,塑韧性得到改善;板条界面逐渐消失,晶界处析出的渗碳体长大和球化趋势越来越明显。随着回火时间延长,10Cr Ni3Mo V钢球头与腹板处的强度与硬度略有下降,塑韧性明显改善;碳化物的析出量减少,原有的粒状碳化物有聚集长大趋势。本试验钢获得良好强韧性匹配的最佳回火工艺为:回火温度630~650℃,回火时间3~3.5 h。  相似文献   

2.
利用SEM、TEM和力学性能检测等方法研究了850℃,900℃,930℃不同淬火温度对690 MPa级石油储罐用钢板组织与性能的影响.结果表明,850℃淬火和630℃回火后组织为铁素体和同火贝氏体,且随淬火温度升高钢板组织中铁素体逐渐减少至消失;回火后的析出物主要有板条内部析出的Ti、Nb、V(C,N)相和晶界上析出的Cr、Mn、Mo、V的碳化物,V(C,N)化合物有晶内析出和晶界析出两种方式.随淬火温度升高,第二类碳化物聚集明显降低,930℃淬火和630℃回火后的析出物分布细小弥散,从而提高钢板的韧性.因此,试验钢板经930℃淬火和630℃回火后,综合性能最佳,其抗拉强度为755 MPa,屈服强度为684 MPa,伸长率为23.2%,-20℃冲击功为207 J.  相似文献   

3.
分别在300℃和450℃下对淬火态M50钢进行了碳分配处理,并利用X射线衍射仪(XRD)、扫描电镜(SEM)及透射电镜(TEM)对碳分配后试样进行观察分析,研究传统Q-T(淬火-回火)和新型Q-P-T(淬火-碳分配-回火)热处理工艺对M50钢性能的影响。结果表明:经碳分配后M50钢中残留奥氏体的碳含量由淬火态的0.64 mass%,最高升至1.20 mass%(300℃,30 min)及1.10 mass%(450℃,0.5 min);不同温度下,随着保温时间的延长,残留奥氏体的碳含量降低;碳分配时M50钢中存在碳化物的析出,随着时间的延长,碳化物析出量逐渐增加,碳分配过程中析出的碳化物为Fe3C;新型Q-P-T热处理工艺可以在保证M50钢强度的前提下,将其冲击吸收功提高90%以上。  相似文献   

4.
利用透射电镜、扫描电镜等试验手段研究了回火温度对2000 MPa和2200 MPa两种强度级别Co-Ni超高强度钢的微观结构、断口形貌与力学性能的影响。结果表明,两种强度级别Co-Ni超高强度钢的强化均与M2C碳化物有关。Co-Ni超高强度钢在400~450℃回火韧性出现谷值,产生的原因与板条边界存在Fe3C、M3C及M2C处于共格状态,使马氏体基体产生强烈静畸变有关,冲击试样断口微观形貌表现为准解理断裂。Co-Ni超高强度钢在480~510℃回火,马氏体板条内析出细小、弥散的M2C,粗大片状Fe3C被细小、弥散的MC取代,使其具有比较好的强韧性配合。  相似文献   

5.
研究了低碳含铬钢950℃淬火后650℃回火,不同的保温时间下,Cr对低碳合金钢调质后性能的影响,并和不加Cr相同成分的钢作了对比。研究发现,当保温时间以2.5 min/mm计算时,加Cr钢的力学性能低于不加Cr同成分的钢,金相组织观察发现Cr能够有效提高低碳合金钢的淬透性,淬火后即使钢板的心部也能获得贝氏体组织,为后续的回火做好组织准备。然而在回火后容易形成M23C6及M7C3碳化物,其稳定性较差,容易聚集长大,且形态为条状,拉伸时容易弯曲破裂,严重破坏钢板的连续性,降低钢板的强度及塑性。对不同回火保温时间的含Cr钢的二次相粒子析出行为研究发现,以1 min/mm计算保温时间时,没有发现含Cr碳化物的析出,但随着保温时间的增加,Cr钢中的含Cr碳化物快速析出,并迅速长大,尤其是以3 min/mm计算保温时间下,含Cr碳化物尺寸已经达到了300 nm。因此对含Cr低碳合金钢,必须采用合适的调质工艺,适当缩短回火保温时间,以降低碳化物的聚集长大,避免回火后强度和塑性的同时降低。  相似文献   

6.
利用TEM和三维原子探针(3DAP)研究了一种Fe-Cr-Ni-Mo高强钢中碳化物随回火温度的变化及其对力学性能的影响.结果显示,回火温度较低(400℃)时,钢中析出M3C合金渗碳体及M7C3合金碳化物,M为Fe,Cr和Mn的组合,其中M3C长度约为1μm,而M7C3尺寸较小,小于200 nm;回火温度较高时(500和600℃),碳化物析出数量增加,但M3C合金渗碳体尺寸变小,数量减少甚至不出现,同时析出尺寸较小的M2C和M6C(小于200 nm);继续提高回火温度(650℃),除M2C外还出现MC型碳化物,其尺寸小于100 nm,析出数量减少.合金碳化物M2C,M6C和MC的合金元素主要以V,Cr和Mo为主.高强钢的强度随回火温度的升高而下降,但在500~600℃回火温度区间,由于V碳化物析出会引起二次硬化效果,强度下降不明显,因此实验钢在530~600℃内回火后可获得较好的强韧性配合.  相似文献   

7.
高CoNi合金钢中二次碳化物的析出与转化   总被引:4,自引:0,他引:4  
高CNi超高强度合金钢是典型的淬火回火马氏体钢,等温回火处理产生的针状合金碳化物沉淀即二次硬化反应使材料达到高的强韧性,针状合金碳化物M2C从马氏体基体α-Fe中以共格形态析出,该共格关系随过时效而失去回火温度较高时M2C转化为稳定的合金碳化物M23C6和M7C3。利用微衍射技术唯一地确定了可能的合金碳化物沉淀相的晶体结构。  相似文献   

8.
利用OM、SEM和TEM等研究了热处理温度(正火温度、淬火温度和回火温度)对Cr-Ni-Mo-V钢微观组织和力学性能的影响。结果表明:在840~920℃的正火温度和淬火温度范围内,合金钢的原奥晶粒尺寸变化不大(8~17μm),对最终回火态合金钢的力学性能影响较小。随着回火温度(460~660℃)的升高,基体α-Fe的板条宽度从460℃的50 nm逐渐增加到610℃的500 nm,直至660℃板条特征不明显;与此同时,基体α-Fe逐渐分解析出较粗大(500~1000 nm)的条状碳化物,使得Cr-Ni-Mo-V钢的强度逐渐降低,而在510~560℃析出了细小弥散的针状碳化物(50~500 nm)和球状碳化物(50 nm),引起了二次硬化,使得合金钢的强度反而略有增加。此外,合金钢的伸长率逐渐升高,-50℃冲击吸收能量从560℃开始明显提高。采用840~920℃正火+840~920℃淬火+510~610℃回火处理工艺可使Cr-Ni-Mo-V钢获得较好的综合力学性能。  相似文献   

9.
周军  曾德愚 《铸造技术》2015,(1):122-124
在传统的控制轧制基础上,直接淬火+回火工艺得到了Nb-Ti低合金钢的最优综合力学性能,即回火温度为200℃时,抗拉强度为1 730 MPa,屈服强度为1 400 MPa,-40℃冲击功为43 J。低温回火,板条内析出碳化物。随回火温度升高,实验钢韧性先降低,形成回火脆性线性,再升高,逐渐形成球形渗碳体,600℃时最多。  相似文献   

10.
对试验钢进行了两阶段控轧后直接淬火到室温,研究了250~600℃不同回火温度对组织和性能的影响。结果表明:在低于350℃回火时,试验钢的组织为细小的板条马氏体,碳化物的尺寸细小,且具有良好的强韧性;350℃回火的综合力学性能最好,抗拉强度为1630 MPa,屈服强度为1395 MPa,-20℃冲击吸收功为22 J;高于350℃回火,马氏体板条宽度明显增加,碳化物长大粗化,强度下降;450℃回火,出现粗大的碳化物导致回火脆性,韧性最差。  相似文献   

11.
研究了 2 Cr12 Ni Mo WV钢淬火后 ,经 35 0~ 710℃不同温度回火 ,其显微组织、相结构和室温力学性能的变化。结果表明 :在 40 0~ 5 0 0℃回火 ,出现回火脆性 ,这主要与马氏体中析出 M2 C、M2 3C6 型碳化物 ,产生二次硬化有关。在5 5 0~ 5 70℃回火 ,出现冲击韧度明显升高的现象 ,升高值与淬火温度有关。随回火时间的延长 ,发生了 M7C3→ M2 3C6 碳化物类型的转变  相似文献   

12.
利用力学性能测试、金相观察、TEM、SEM和XRD等分析手段,研究了回火温度对40CrNi3MoV和50CrNi5MoV钢组织与力学性能的影响。结果表明,40CrNi3MoV钢和50CrNi5MoV钢回火后的组织具有板条马氏体特征,在板条马氏体的边界分布着高密度位错。试验钢在500~650℃范围内回火时,随着回火温度的增加,碳化物析出并长大;硬度、强度呈下降趋势;而冲击吸收能量、伸长率、断面收缩率呈上升的趋势。由于C、Mo和Ni含量的增加,在500~550℃范围内回火后,50CrNi5MoV钢的屈服强度能够达到1400MPa级,比40CrNi3MoV钢高170MPa左右,且塑韧性较好。  相似文献   

13.
对国外P92钢进行不同温度(1040、1060、1080 ℃)淬火和1060 ℃淬火+不同温度(740、760、780 ℃)、不同时间(1、3、5、7 h)的回火热处理,研究热处理参数对其显微组织、晶粒度及硬度的影响。结果表明,经淬火后P92钢组织为板条状马氏体+残留奥氏体,随淬火温度的升高,马氏体组织板条逐渐变粗大,平均晶粒度由9级增大至7级。P92钢经1060 ℃淬火后,随着回火温度的升高和回火时间的延长,P92钢硬度逐渐降低,回火马氏体板条逐渐合并并向回火索氏体过渡,且回火过程中碳化物在晶界和晶内析出并不断长大。  相似文献   

14.
热处理对超超临界材料KT5331AS0组织和性能的影响   总被引:1,自引:1,他引:0  
研究了热处理工艺对超超临界材料KT5331AS0(10Cr11Co3W3NiMoVNbNB)的组织和性能的影响.结果表明:KT5331AS0钢在1050~1150℃加热淬火、660~720℃回火,其组织都是回火板条马氏体;随淬火加热温度的升高,板条马氏体逐渐长大,但长大趋势不明显;随回火温度的升高,南于碳化物的析出,产生沉淀强化,使其具有较高的持久强度.KT5331AS0钢在1080~1100℃加热淬火、680~700℃回火后具有较好的综合力学性能.  相似文献   

15.
回火时间对铌钒微合金钢中析出物的影响   总被引:2,自引:0,他引:2  
将Nb-V微合金钢在1200℃固溶0.5h后淬火,在500℃回火不同时间,结合光学显微镜(OM)和透射电子显微镜(TEM),用三维原子探针(3DAP)研究了显微组织的变化和碳化物的析出特征.结果显示,淬火样品中V、Nb分布均匀,C由于自回火出现轻微偏聚;回火0.5h样品中有少量C-V或C-V-Nb团簇,而回火4h的样品中有大量的C-V或C-V-Nh团簇或析出相.这表明随着回火时间的延长,固溶在基体中的C、V、Nb原子首先发生偏聚,逐渐形成C-V-Nh团簇,最后形成了(Nb,V)C复合相.  相似文献   

16.
通过正交试验分析了高温预冷淬火工艺对含铌0.044%(质量分数)的中碳微合金钢的显微组织和硬度、强度、塑性、韧性等性能的影响。结果表明,高温预冷淬火与普通淬火相比,可以明显提升钢的硬度;预冷温度提高、回火时间缩短有利于提高中碳铌微合金钢的强度;预冷温度降低、回火时间延长有利于提高中碳铌微合金钢的塑性与韧性。在本试验条件下,获取其最佳强度值的工艺为1000 ℃预冷,200 ℃回火1 h;获取最佳塑、韧性的工艺为900 ℃预冷,600 ℃回火3 h,此时钢断面收缩率为53.8%,断后伸长率为15.1%,冲击吸收能量为96 J。  相似文献   

17.
本文选用25合金钢作为新一代低温阀门钢的实验材料。研究分析深冷处理时间和次数对25合金钢组织和性能影响规律。研究结果表明淬火后组织为细小的板条马氏体,深冷处理后组织为残余奥氏体和片状马氏体,并随着深冷次数和时间的延长,细小弥散的碳化物析出分布在晶界,同时残余奥氏体转变为细小的回火马氏体组织。深冷处理对材料力学性能有明显的影响,硬度和强度随着深冷处理时间和次数增加逐渐增大,但应变却逐渐降低。自然时效72 h后立即二次深冷处理120 min,材料获得最优的力学性能,硬度为52. 6 HRC,屈服强度为1345 MPa,抗拉强度为1390 MPa。深冷处理后材料的线膨胀系数减小,由淬火态的14. 45×10~(-6)/℃减小到12. 26×10~(-6)/℃,而且在低温下表现为比较稳定,达到低温阀门钢的低温服役条件。  相似文献   

18.
利用金相显微镜(OM)、扫描电镜(SEM)、常温拉伸和-20℃低温冲击实验,分析了直接淬火(DQ)和再加热淬火(RQ)工艺对Q690钢组织和性能的影响。结果表明,直接淬火实验钢保留了变形组织,被拉长的奥氏体晶粒沿着轧制方向分布,而再加热淬火钢中出现奥氏体晶粒呈等轴状。直接淬火工艺可显著细化马氏体板条尺寸,板条内存在大量变形位错和变形带,为碳化物析出提供了更多的形核质点,促进了回火过程中碳化物的细小弥散析出,使直接淬火钢具有更高的高温回火抗性和强韧性匹配。  相似文献   

19.
对两种不同Ti含量的低合金耐磨钢进行淬火后在160~540℃温度区间回火处理。结合冲击性能、力学性能及磨损实验的测试结果,利用SEM,TEM等对不同热处理状态实验钢的微观组织及析出相的分析,研究了回火工艺及组织演变对性能影响。结果表明,两组实验钢在190℃回火,均得到回火马氏体,回火马氏体形态仍然为板条状,板条间有(Nb,Ti,V)碳化物析出;而500℃回火时,马氏体板条消失,得到回火索氏体组织。两组实验钢淬火后在190℃与500℃回火时-20℃冲击功出现峰值,分别为40 J与60 J,其中Ti含量为0.09%的2号实验钢淬火及在190℃回火后,综合力学性能最佳,其屈服强度为1218 MPa,抗拉强度1507 MPa、硬度429.5 HV,伸长率17.5%,抗磨损性能也优于Ti含量较高(0.18%)的1号实验钢。  相似文献   

20.
研究了经不同介质和不同温度淬火并于250℃回火后衬板用低碳高合金钢的组织和性能。结果表明,淬火和回火后钢的组织为板条马氏体、少量残留奥氏体及碳化物,具有较高的强韧性。该钢获得良好的韧性与硬度配合的热处理工艺为1020℃油淬、250℃回火。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号