首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《热处理》2021,(4)
采用电子束增材制造技术制备了 TC4钛合金试棒,对试棒进行了 700~1 000℃的退火、900~960℃的固溶处理和550℃时效处理,检测了热处理后合金的显微组织和力学性能。结果表明:随着退火温度的升高,合金晶粒内α相的取向差增大,β相含量增加,针状α相数量减少,α相发生粗化;1 000℃退火的合金α相板条呈等轴状,组织明显粗大;随着固溶温度的升高,合金组织中针状次生α相数量增多,组织粗化;960℃固溶处理的合金组织为全片层状的次生α相;随着退火温度的升高,合金的抗拉强度和塑性均下降;随着固溶温度的升高,合金的抗拉强度增加而塑性降低,960℃固溶处理的合金抗拉强度最高,达1 167.2 MPa,断后伸长率为6%;经900℃×1 h固溶处理、水冷随后550℃×4 h时效处理的合金力学性能最好,抗拉强度为1 075.7 MPa,断后伸长率为10%。  相似文献   

2.
《塑性工程学报》2020,(2):108-113
以Ti-3. 5Al-5Mo-6V-3Cr-2Sn-0. 5Fe合金为研究对象,研究了冷轧过程中不同中间退火温度对合金轧制态、固溶态和时效态组织以及性能的影响。研究表明,冷轧板材的主要强化机制是加工硬化,轧程中间退火制度对加工硬化现象影响显著,α+β相区中间退火合金相比于β单相区中间退火合金加工硬化程度大,强度高,但伸长率低。冷轧合金板材经过750℃固溶处理2 min后晶粒尺寸显著细化,β单相区中间退火晶粒尺寸比α+β相区晶粒尺寸大。经过固溶处理后合金主要强化机制为细晶强化,α+β相区中间退火合金的晶粒尺寸小,强度和伸长率高于β单相区中间退火合金。冷轧合金板材经过750℃固溶处理2 min加550℃时效处理4、8和16 h后,在β基体上形成了大量的次生α相,随着时效时间的增长,次生α相的尺寸明显增大,合金强度先升高后下降,伸长率一直增加。α+β相区中间退火的合金形成了等轴的初生α相,其强度和伸长率均高于相同热处理状态下β单相区中间退火的合金。  相似文献   

3.
研究了固溶温度及冷却速度对Ti3510钛合金锻件的显微组织及力学性能的影响。XRD结果表明,固溶后空冷的合金相组成主要为α相及β相,固溶后水冷的合金相主要为α'相及β相,且有少量的α'相析出。显微组织表明,合金微观组织形貌对冷却速度十分敏感,固溶后空冷的合金主要为细小的针状或点状析出物,固溶后水冷的合金主要为板条状次生相。室温拉伸结果表明,随着固溶温度的升高,空冷后的合金强度及塑性总体上缓慢提高,至800℃处理时强度达到最高,抗拉强度达到998 MPa,伸长率为10%。水冷处理后合金强度下降,但塑性提高。850℃固溶后水冷,合金的抗拉强度达到812 MPa,伸长率为25%。  相似文献   

4.
研究了冷轧变形及退火温度对TC4钛合金管组织和性能的影响。结果表明:变形和退火对TC4钛合金管冷轧性能影响很大,当变形为36%时,冷轧管的综合性能较好;当变形达到46%时,冷轧管出现连续月牙状缺陷和裂纹。随着退火温度的升高,管材的强度先下降后升高,塑性先升高后下降。当退火温度为850℃时,管材的强度最低,但塑性最高。最适宜管材冷轧的退火温度为850℃。此条件下,屈服强度810MPa,伸长率22%。  相似文献   

5.
对冷轧后Ti80管材分别进行不同温度退火处理,分析不同的热处理制度对冷轧Ti80管材力学性能和组织的影响。结果表明,低于相变点退火时,随着温度升高,初生α相逐渐球化,初生α相含量明显降低,β相含量增加;高于相变点退火时,形成粗大的魏氏体组织;固溶后时效,温度越高,次生α相越粗大;低于900℃进行退火时,随着温度升高,强度下降,塑性和冲击韧性上升;固溶退火时,室温拉伸性能对温度并不敏感,强度和塑性稳定,但随着温度的升高,冲击韧性提高。经综合分析,950℃退火时,合金力学性能和冲击韧性都很好,可获得理想的综合性能。  相似文献   

6.
本论文研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分在α/β和β区固溶处理后,在460℃~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相 ,导致强度和塑性较差。  相似文献   

7.
研究了新型高强钛合金(Ti-6Al-6Mo-4V)的微观结构和力学性能。分别在α/β和β区固溶处理后,在460~620℃5个不同温度下时效6h,研究合金的组织与性能之间的关系。结果表明,α/β区固溶时效处理后的性能与β单相区固溶时效处理后相比,α/β区固溶时效处理后合金获得更好的强度和塑性组合。在850℃(α/β区域)固溶处理以及460℃时效后,合金获得最高的强度为1572 MPa,伸长率为2.63%;在620℃时效时,合金的伸长率达到最高为11.46%,但强度较低为1201 MPa。经过825℃固溶处理,540℃时效后,该合金获得最好的强度(1328 MPa)和伸长率(7.58%)匹配。同时,β区溶液处理后的β晶粒较大,时效后形成细小的二次α相,导致强度和塑性较差。  相似文献   

8.
研究了TC4钛合金薄板经普通退火、α+β两相区固溶加时效处理及β单相区固溶加普通退火处理后,显微组织与力学性能的关系。结果表明,普通退火处理对TC4钛合金板材显微组织的影响较小,α+β两相区固溶加时效处理后能够获得双态组织,而β单相区固溶加普通退火处理能获得粗大的魏氏组织;其中双态组织的TC4钛合金薄板表现出优异的拉伸性能,而魏氏组织的TC4钛合金薄板具有较低的疲劳裂纹扩展速率及较高的裂纹扩展阻力。  相似文献   

9.
对TC4-DT合金板材(α+β)两相区在不同温度及冷却方式下进行热处理,研究其组织和性能的变化。结果表明,在两相区固溶处理得到等轴或双态组织,随着固溶温度的提高,初生α相含量减少,析出的β相转变组织略有粗化,合金强度升高,伸长率略有下降。两相区热处理后纵、横向的拉伸力学性能没有明显的各向异性。900℃固溶处理后,采用水冷方式固溶处理的合金在不明显降低塑性的情况下可提高拉伸强度。  相似文献   

10.
TC4-DT钛合金热机械处理后的组织特征和力学性能   总被引:1,自引:0,他引:1  
研究热机械处理(两相区变形加普通退火、双重退火、固溶时效以及三重退火)对 TC4-DT 钛合金组织和力学性能的影响。结果表明,热机械处理对显微组织参数影响显著,随着退火和时效温度的升高及冷却速度的降低,初生α相的体积分数和原始β晶粒的尺寸降低,而晶界α和次生α相的宽度却升高。由于固溶时效处理获得了大量的β转变组织和细小的晶界α相和次生α相,合金强度最高,但伸长率不及其它条件的,其断裂强度、屈服强度、伸长率和断面收缩率分别为1100 MPa、1030 MPa、13%和53%,双重退火获得了良好的强度和塑性匹配,合金力学性能分别为940 MPa、887.5 MPa、15%和51%。组织参数和性能的关系表明,随着β转变组织的增多和原始β晶粒尺寸的增大,材料的强度和断面收缩率升高,而晶界α相和二次α相的宽度对力学性能的影响却呈相反趋势。此外,晶界α相含量的减少和原始β晶粒尺寸的降低有助于塑性的提高。  相似文献   

11.
研究热机械处理(两相区变形加普通退火、双重退火、固溶时效以及三重退火)对TC4-DT钛合金组织和力学性能的影响。结果表明,热机械处理对显微组织参数影响显著,随着退火和时效温度的升高及冷却速度的降低,初生α相的体积分数和原始β晶粒的尺寸降低,而晶界α和次生α相的宽度却升高。由于固溶时效处理获得了大量的β转变组织和细小的晶界α相和次生α相,合金强度最高,但伸长率不及其它条件的,其断裂强度、屈服强度、伸长率和断面收缩率分别为1100 MPa、1030 MPa、13%和53%,双重退火获得了良好的强度和塑性匹配,合金力学性能分别为940 MPa、887.5 MPa、15%和51%。组织参数和性能的关系表明,随着β转变组织的增多和原始β晶粒尺寸的增大,材料的强度和断面收缩率升高,而晶界α相和二次α相的宽度对力学性能的影响却呈相反趋势。此外,晶界α相含量的减少和原始β晶粒尺寸的降低有助于塑性的提高。  相似文献   

12.
周伟  葛鹏  赵永庆  陈军 《热加工工艺》2007,36(22):18-20,23
研究了一种新型的亚稳定β钛合金在α β两相区固溶时效处理(850℃×1h AC 600℃x6h AC)、β区固溶时效(880℃×lh AC 600℃×6h AC)、α β和β双重处理(850℃×0.5 h→880℃×0.5h AC 600℃×6h AC)3种热处理状态下的显微组织与力学性能.结果表明,850℃固溶处理没有改变原始加工态组织形貌;880℃固溶的显微组织为再结晶晶粒,低温时效后析出少量的α相;β (α β)双重处理后的显微组织为再结晶的β晶粒内析出较多的α相.无论在α β区还是在β区固溶时效处理,该合金都具有很好的强度短线塑性匹配关系,且达到了很高的强度级别;再结晶对于提高合金的断裂韧性有利,但从保持合金塑性的角度,固溶温度不宜选择在β温度区.因此将固溶温度定在α β两相区的接近β相变点的850℃是相对合理的.  相似文献   

13.
用拉伸试验以及冲击试验等方法,研究退火及固溶时效热处理工艺对经激光选区熔融(SLM)技术制备的TC4合金组织与力学性能的影响。结果表明,零件的伸长率、断面收缩率以及冲击吸收能量都有了明显增加,同时零件强度均有所下降。TC4合金经热处理后,固溶时效处理后零件强度下降最小;退火可以提高TC4合金的冲击性能; 850℃退火+炉冷的热处理方式使得TC4合金伸长率达到10%以上,断面收缩率达到30%以上,对TC4合金的塑性以及冲击性能提高效果最好。  相似文献   

14.
采用规格为Ф4.0 mm×0.3 mm冷轧TLM(Ti-25Nb-3Zr-3Mo-2Sn,TLM))合金细径薄壁管材,分别在660,720℃进行固溶处理以及对720℃固溶态管材在510℃进行时效处理,利用金相显微镜、XRD、室温拉伸及断口观察分析了固溶、时效对管材组织、力学性能的影响。不同固溶态管材均为等轴组织,随着固溶温度升高,平均晶粒尺寸增大。相变点以上的固溶组织由β相和α'相组成,相变点以下固溶组织还有少量α相。时效过程中,针状的α相在晶界析出更快,合金相变化过程为β+α'→β+α'+α→β+α,时效时间大于3 h时,α相的析出使应力-应变曲线的"双屈服"特征减弱;随着时效时间的延长,抗拉强度、屈服强度及弹性模量升高,而延伸率降低。综合分析表明:720℃+510℃,3 h时效态具有较好的综合力学性能。  相似文献   

15.
研究了在普通退火和等温退火时,不同退火温度下TC6合金的微观组织演变过程及力学性能变化规律。结果表明:普通退火中随退火温度的升高,微观组织中细小的次生α相逐渐溶入基体相而消失,粗大的次生α相继续长大;最后发生再结晶,形成新的β晶粒在其内部析出新的针状组织。这一过程中合金室温强度呈抛物线形变化,并在850℃和870℃附近达到最大值约1090 MPa。等温退火中随退火温度的升高,微观组织中次生α相发生等轴化,由片层组织长大为等轴α相;并随退火温度的升高,等轴α相尺寸显著增加。这一过程中合金室温强度呈台阶式降低,当温度在850℃和870℃时,室温强度达到最大值约1000 MPa。  相似文献   

16.
研究了外径为φ10mm左右的近β钛合金管材冷轧及退火工艺。通过改变冷轧过程中的工艺参数,研究了加工变形量、减壁,减径比(Q值)对近β钛合金管材拉伸力学性能的影响。对冷轧加工管材进行680℃,1h,715℃,1h,750℃,1h,820℃,1h固溶处理后分别水淬(WQ)、空冷(AC)、炉冷(FC),研究了固溶温度、冷却速度对管材显微组织和拉伸力学性能的影响。结果表明:在小变形量下冷扎,管材塑性对形变硬化非常敏感,变形量大于35%后,马氏体转变使得合金塑性有所恢复,管材不适宜在Q值小于2的条件下加工。相变点以上固溶处理后管材屈强比不到0.6,固溶后空冷处理管材具有良好的强度和塑性匹配。  相似文献   

17.
研究了高能量输入条件下激光熔化沉积(LMD) TC4钛合金在沉积态、去应力退火、热等静压、热等静压+固溶时效、固溶时效5种状态下的显微组织和室温拉伸性能。结果表明:直接沉积态的TC4合金组织粗大且不均匀,原始β晶内由大量针状马氏体α'相和转变的板条α相组成,综合力学性能低,其纵向抗拉强度仅839 MPa; 650~800℃的去应力退火后,激光熔化沉积成形TC4钛合金的组织中α板条宽度随退火温度的上升先增加后减少,拉伸性能呈现先升高后降低的趋势;热等静压后合金组织为网篮组织;固溶时效后合金组织主要由无序的短棒状α相组成,拉伸性能明显上升,其抗拉强度达到1022 MPa,屈服强度达到909 MPa,伸长率超过9%。  相似文献   

18.
研究了TC4钛合金棒材经650和700℃固溶处理及时效处理后的组织和性能变化。结果表明:对热加工态的TC4钛合金进行650℃的固溶热处理,材料的显微组织和拉伸性能变化不大。经过700℃固溶热处理,TC4钛合金棒材强度明显降低,屈服强度相对于热加工态降低77 MPa,且屈/强比明显低于普通退火。时效热处理后,合金的强度显著提高,400℃时效后抗拉强度达到1020 MPa,相对于热加工态提高53 MPa。显微组织分析表明,热加工后的TC4棒材显微组织由初生α相、次生α相以及残余β相组成。热处理过程中,残余β相中针状α相的溶解与重新析出是影响合金拉伸性能变化的主要原因。  相似文献   

19.
通过对激光沉积TC4钛合金沉积态和热处理态的显微组织、静载力学性能及显微硬度进行对比研究,探索改善激光沉积TC4钛合金组织,进而提高综合力学性能的途径。研究结果表明,沉积态试样在970 ℃热处理后初始连续的晶界α相已经彻底破碎;随着固溶时间的延长,球状α相进一步长大且增多,α板条充分生长且显著增大;在970℃固溶2h后再进行时效热处理后,组织是一种由等轴α,网篮α和转变β相构成的三重混合组织,使得组织参数达到最优化。与沉积态和退火态相比,固溶时效处理后的试样,由于组织中的等轴组织起着变形协调的作用,网篮组织可以降低位错的塞积作用进而提高塑性,使得塑性有很大的提高且强度又降低不多,综合力学性能得到显著的提高。激光沉积制造TC4钛合金的沉积态、退火态、固溶时效态和固溶态(固溶温度相同)的显微硬度依次升高,但是当固溶温度进一步提高至相变点以上进行热处理时,由于再结晶后的晶内组织发生了重排,试样的显微硬度将会明显下降。  相似文献   

20.
研究了不同热处理条件下TC4合金的微观组织和力学性能.结果表明,退火处理后,组织由α相与α相晶粒间弥散的细小等轴状β所组成,强度、硬度降低,韧性提高;在TC4两相区进行固溶处理,初生α相含量减少,形成了针状的马氏体α"组织,β相则由细小的等轴状逐渐转变为层片状,使得合金强度、硬度提高,伸长率呈下降趋势;时效处理后,针状的马氏体α"和亚稳态的β相将发生分解,转变成稳定的弥散的α相和β相,使合金综合性能得到改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号