首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
对Cu-Cr-Zr-Ag合金在Gleeble-1500D热模拟试验机上进行热压缩实验,对合金在应变速率为0.001~10 s-1、变形温度为650~950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行了研究。结果表明,流变应力随变形温度升高而减小,随应变速率提高而增大。Cu-Cr-Zr-Ag合金在热变形过程中的动态再结晶机制受变形温度和应变速率控制。当温度达到950℃,应变速率为0.001 s-1时,Cu-Cr-Zr-Ag合金发生完全的动态再结晶。该合金高温热压缩变形时的热变形激活能Q为343.23 k J/mol,同时利用逐步回归法建立了该合金的流变应力方程。  相似文献   

2.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

3.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的流变应力行为进行了研究。利用光学显微镜分析了合金在热变形过程中的组织演变及动态再结晶机制。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。升高变形温度以及降低应变速率,均有利于Cu-Cr-Zr合金的动态再结晶发生。从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能Q为392.5 kJ/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。  相似文献   

4.
采用Gleeble-1500热模拟实验机进行热压缩试验,研究ZA27合金的热变形行为,在变形温度为200~350℃、应变速率为0.01~5 s-1、工程应变为60%,基于Murty准则,建立ZA27合金的加工图。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;在变形温度为200~210℃、应变速率为0.01~0.1 s-1和变形温度为250~350℃、应变速率为1~5 s-1的2个区域内易产生流变失稳现象;动态再结晶是导致流变软化及稳态流变的主要原因,ZA27合金的安全热加工区域的变形温度在250~350℃之间、应变速率在0.1~1 s-1之间。  相似文献   

5.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Ag合金进行高温等温压缩试验,当热压缩应变速率为0.001~10 s-1、热变形温度为650~950℃时,同时对合金高温热压缩的热加工图以及变形机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为Q=343.23 k J/mol,同时利用逐步回归的方法建立了该合金的流变应力方程。根据动态材料模型计算并分析了合金的热加工图,并且获得了试验参数范围内热变形过程的最佳工艺参数:温度为750~800℃、应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

6.
利用Gleeble-1500D热模拟试验机,对Cu-0.2%Zr-0.15%Y合金进行高温热压缩热模拟试验,对合金在应变速率为0.001~1 s-1、变形温度为550~900℃时,试验过程中的流变应力变化、动态再结晶机制及其微观组织变化进行了研究。结果表明,试验合金流变应力受应变温度和变形速率的影响极大,动态再结晶的显微组织对温度的变化反应敏感,当变形温度降低或者应变速率升高时,其流变应力曲线随之上升。通过流变应力、应变速率和变形温度之间的联系,解出了该合金在热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)以及其本构方程。  相似文献   

7.
利用Gleeble-1500D热模拟试验机对Cu-Cr-Zr-Y合金进行高温等温压缩试验,变形温度和应变速率分别为650~850℃和0.001~10 s-1,对合金高温热压缩过程中的变形行为进行研究。结果表明:其流变应力随应变速率的提高而增大,随变形温度的升高而减小。并根据动态材料模型绘制和分析了该合金的热加工图,得出了热变形过程的最佳工艺参数为:温度为800~850℃,应变速率范围为0.001~0.1 s-1。  相似文献   

8.
在Gleeble-1500D热模拟试验机上对Cu-Cr-Zr-Nd合金进行热压缩实验,对合金在应变速率分别为0.001、0.01、0.1、1、10 s-1,变形温度分别为650、750、850、900、950℃的高温变形过程中的流变应力行为、热变形过程中的组织演变和动态再结晶机制进行研究。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。Cu-Cr-Zr-Nd合金在热变形过程中的动态再结晶机制受变形温度和应变速率的影响。当温度为900℃、应变速率为10 s-1时,Cu-Cr-Zr-Nd合金发生完全的动态再结晶。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能Q为404.84 k J/mol,同时利用逐步回归的方法建立该合金的流变应力方程。  相似文献   

9.
2195铝锂合金被认为是航空航天领域的理想结构材料,吸引了广大研究学者的兴趣,但其热变形行为的研究却相对较少。本文通过热模拟平面应变压缩试验,研究了2195铝锂合金的热变形行为,变形温度为400~500 ℃,应变速率为0.01~10 s-1。研究表明,材料变形呈稳态流变特征,随变形温度增加,应变速率降低,流变应力逐渐减小,合金具有正应变速率敏感性。建立了2195铝锂合金材料本构方程,其激活能值为214.937KJ/mol。通过分析加工图,得到材料的适宜加工区为应变速率接近0.01 s-1,温度为475~500 ℃。最后通过分析动态软化过程中的应力规律,得到了材料软化机制判定方程。  相似文献   

10.
在Gleeble-3000热模拟试验机上进行等温恒速率热压试验(变形温度800~950℃,应变速率0.001~1.0 s-1),研究了TB8合金的高温塑性变形流变应力变化规律,建立了一个包含应变量的本构方程。结果表明,流变应力随变形温度的升高和应变速率的降低而减小;当ε·≤0.1 s-1时,TB8合金高温热压流变曲线为动态再结晶型流变曲线;热变形激活能Q、材料常数n、α、及ln A均与变形量有关;所建立的本构关系能较好的反应TB8合金高温低应变速率下的流变特征。  相似文献   

11.
在Gleeble-1500D热模拟机上对Zn-Cu-Ti合金进行等温压缩试验,研究了变形温度为150~240℃,应变速率为0.01~10 s-1,变形量为50%时锌合金的热变形行为。采用光学显微镜观察热压缩过程中微观组织的变化。结果表明,锌合金在热压缩过程中发生了动态再结晶。锌合金的峰值流变应力随变形温度的升高和变形速率的下降而降低,该合金的流变应力模型可用Arrhenius方程来描述。试验中发现,该合金存在两个热加工安全区,即温度为150~210℃、变形速率为0.67~10 s-1区域和温度为215~240℃、变形速率为0.01~0.98 s-1区域。最佳热加工工艺参数:变形温度为235~240℃,变形速率为0.09~0.11 s-1,功率耗散效率为35%。  相似文献   

12.
通过在Gleeble-l500热模拟试验机上进行等温热压缩试验,研究2E12铝合金在变形温度为300~500℃和应变速率为0.0l~l0 s-1条件下的流变应力行为,计算、推导出用包含Arrhenius项的Zener-Hollomon参数描述2E12合金高温压缩流变行为的表达式,并分析形变热、变形温度和应变速率等参数对流变应力的影响规律。结果表明:应变速率和变形温度对2E12合金的流变应力影响显著,流变应力随着温度的升高而降低,随着应变速率的提高而增大;在ε≥1 s-1时,形变热导致流变应力降低,且幅度随着应变速率的增大而增大,随着变形温度的升高而降低。  相似文献   

13.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

14.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

15.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

16.
《塑性工程学报》2015,(4):133-140
采用Gleebe-1500D热压缩模拟试验机在变形温度350℃~500℃、应变速率0.001s-1~5s-1的条件下对Al-17.5Si-4Cu-0.5Mg合金进行热压缩实验,研究该合金在热塑性变形条件下的流变应力行为,并建立热变形时的本构方程。研究结果表明,随着应变速率的增加、变形温度的降低,合金的流变应力增加,为正应变速率敏感性材料;采用Znenr-Hollomon参数双曲正弦形式对合金高温塑性变形时的流变应力行为进行描述,流变应力σ解析表达式中材料常数A,σ,n分别为1.81×1019s-1,0.024MPa-1和6.37,合金的平均热变形激活能Q为308.61kJ·mol-1。  相似文献   

17.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.15Ag合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究.分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系.并研究了在热压缩过程中组织的变化.结果表明:热模拟实验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数n,应力参数α,结构因子A,热变形激活能Q和流变应力方程.合金动态再结晶的显微组织强烈受到变形温度的影响.  相似文献   

18.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

19.
系统研究了铸态UNS N10276合金在950~1 250℃、应变速率0. 01~10 s-1变形条件下的热压缩流变行为和微观组织演变。结果表明,UNS N10276合金流变应力值随着变形温度的升高以及应变速率的降低而减小,较高的变形温度以及较小的应变速率有利于动态再结晶的发生。根据UNS N10276合金在热变形过程中的流变行为和组织演变特征,得出该合金适宜在温度为1 050~1 250℃以及应变速率为0. 1~1 s-1的变形条件下进行热加工。此外,根据Arrhenius本构模型中的指数函数方程及流变应力数据,建立了UNS N10276合金的热变形本构模型为Z=εexp(497×10~3/RT)=2. 4×10~(14)exp(0.033σ_(0.5)),其表观激活能Q为497 kJ/mol。  相似文献   

20.
采用Gleeble-1500D热模拟试验机,对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的变形行为(流变应力和显微组织)进行研究。根据动态材料模型计算并分析该合金的热加工图,并结合变形显微组织观察确定该合金在实验条件下的高温变形机制及加工工艺。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能(Q)为392.5 kJ/mol,同时利用逐步回归的方法建立该合金的流变应力方程。利用热加工图确定热变形的流变失稳区,并且获得了实验参数范围内热变形过程的最佳工艺参数:温度范围为750~850℃,应变速率范围为0.001~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号