首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对铅基快堆长寿命、小型化、自然循环的设计目标,构建铅基快堆堆芯模型并开展燃料选型研究,选取U-Pu、Th-U循环燃料及氧化物、氮化物、碳化物、金属燃料,分析比较了不同燃料的物性参数、在不同能谱条件下的堆芯物理特性。结果表明:在偏软能谱中,Th基燃料堆芯增殖能力更强,反应性系数负值更大,热工安全裕量更大、裂变产物容留能力更强;PuN-ThN燃料堆芯燃耗特性最佳,可在较疏松栅格条件下获得较强增殖能力,减少燃料装载量,确保固有安全性,兼顾堆芯长寿命、小型化、自然循环设计要求;但堆芯有效缓发中子份额较小,不利于反应性控制。  相似文献   

2.
以小型化、长寿命、自然循环为铅基快堆的设计目标,构建100 MWt铅基快堆堆芯模型并开展冷却剂选型研究,选取Pb同位素/混合物及Pb-Bi混合物,分析比较了采用不同冷却剂堆芯的物理特性与自然循环特性。结果表明:得益于208Pb在高能区小的非弹性散射截面与中低能区极小的中子俘获截面,加之Bi较小的中子俘获截面,采用208Pb-Bi冷却的铅基快堆堆芯在30满功率年运行周期内的燃耗反应性损失最小,增殖性能最佳,且具备负值较大的空泡系数、冷却剂温度系数和较大的有效缓发中子份额,可装载较低富集度或较少量燃料,有利于堆芯小型化、长寿命和固有安全性;208Pb-Bi相比Pb冷却的铅基快堆具备更强的自然循环能力、更弱的材料腐蚀、更宽的运行温度区间,有利于反应堆安全运行与维护。高208Pb丰度的铅可以从钍矿石及钍铀矿石中提取,极大降低了208Pb的分离提取难度。  相似文献   

3.
以提高铅铋快堆的经济性与固有安全性为目标,开展100 MWt超长寿命小型自然循环铅铋快堆SPALLER-100概念设计,在选用PuN-ThN燃料和208Pb-Bi冷却剂的基础上,提出了一种添加固体慢化剂BeO的燃料组件设计方案,开展了堆芯布置研究和控制棒系统设计,分析了堆芯物理特性与稳态自然循环特性。结果表明:在低燃料装载量和小堆芯体积条件下,SPALLER-100堆芯换料周期达32 a,平均卸料燃耗高达210.38 MW·d/kg(HM),整个寿期内的反应性系数均为负值。稳态运行工况下燃料包壳、芯块最大温度均小于安全限值,反应堆具备一回路自然循环能力和一定流量自动分配能力。  相似文献   

4.
以提高铅铋快堆的经济性与固有安全性为目标,开展100 MWt超长寿命小型自然循环铅铋快堆SPALLER-100概念设计,在选用PuN-ThN燃料和~(208)Pb-Bi冷却剂的基础上,提出了一种添加固体慢化剂BeO的燃料组件设计方案,开展了堆芯布置研究和控制棒系统设计,分析了堆芯物理特性与稳态自然循环特性。结果表明:在低燃料装载量和小堆芯体积条件下,SPALLER-100堆芯换料周期达32 a,平均卸料燃耗高达210.38 MW·d/kg(HM),整个寿期内的反应性系数均为负值。稳态运行工况下燃料包壳、芯块最大温度均小于安全限值,反应堆具备一回路自然循环能力和一定流量自动分配能力。  相似文献   

5.
为深入研究第四代核能系统堆型之一铅基快堆的物理性能,进一步提高模块化铅基快堆的安全性和经济性,对铀锆合金燃料装载的不同功率水平的模块化铅基快堆堆芯特性进行研究,发现当堆芯功率提升至一定水平时,堆芯的增殖优势在规定寿期内不能得到充分释放。基于此现象,对模块化铅基快堆铀锆合金燃料堆芯的概念设计进行优化,基于堆芯功率水平和寿期,选择合适的栅距棒径比和燃料芯体有效密度,通过调整单位体积内的铀装量和235U装量调整堆芯的增殖性能,最终使堆芯反应性变化与堆芯功率、寿期基本匹配,寿期内堆芯反应性几乎不发生变化。优化后降低了堆芯反应性控制难度,充分利用了堆芯的增殖性能,同时合理的栅距棒径比为堆芯热工分析提供了安全和设计裕量,有效提高了堆芯的经济性和安全性。  相似文献   

6.
长寿命反应堆的设计要求主要是高燃耗深度和满功率自然循环能力,既要提高堆芯的转换比以获得最小的反应性随燃耗变动,又要充分考虑热工方面自然循环的要求,在一般基于铀钚燃料的长寿命反应堆设计中很难做到两全齐美。本文提出了一种基于乏燃料钚-钍燃料、铅铋合金冷却剂的长寿命堆设计方案,充分利用钍铀燃料在快中子条件下优越的核性能,完成了详细的概念设计并使用MCBurn程序分析其各项属性。  相似文献   

7.
铅基快堆由于较好的冷却剂固有安全性和燃料增殖效应而在核电中被逐渐关注,模块化铅基核电堆芯更能进一步提升堆芯的经济性。本文从堆芯核设计角度出发,分析了100 MW、300 MW、500 MW、700 MW和1 000 MW等不同热功率水平的堆芯分别采用UO2和U-10Zr合金燃料在2000EFPD的换料周期内的经济性。计算分析结果显示:在保持堆芯泄漏基本不变和相同寿期的情况下,堆芯功率水平与堆芯铀装量呈线性增加趋势,同时燃料利用率随堆芯功率水平和堆芯尺寸的增加而逐渐增加;UO2燃料堆芯适用于低功率水平(如100 MW)和较高功率水平(如1 000 MW)的堆芯装载,低功率水平下堆芯铀装量更少,高功率水平下堆芯增殖性能与堆芯能量输出匹配,更利于堆芯反应性控制;U-10Zr燃料堆芯适用于中等功率水平(如500 MW)的堆芯装载,在该功率水平和堆芯尺寸下,堆芯的增殖性能与堆芯能量输出基本匹配,能够充分发挥U-10Zr燃料的高增殖性能。本文通过对铅基模块化核电不同功率水平的经济性进行分析研究,为当前铅基模块化核电的单堆功率提出最佳经济性分析,为铅基模块...  相似文献   

8.
建立改进型快谱超临界水冷堆(SCFR-M)堆芯模型,探讨点火区燃料棒直径和增殖区水棒直径对堆芯转换比的影响,得到合理的燃料组件设计形式。设计并计算6种不同堆芯布置的反应堆增殖特性和空泡反应性,并分析燃料中235U和239Pu成分对堆芯转换比和空泡系数的影响,提高了转换比;研究燃料成分对堆芯转换比的影响。结果表明:减小氢原子数与重金属原子数之比(H/HM),增加堆芯增殖燃料组件数目并采用合理布置可满足堆芯负空泡反应系数,且可以提高堆芯转换比;降低燃料中Pu同位素质量分数可以使堆芯转换比大幅增加,同时使堆芯的空泡反应性系数负值更大;当点火燃料组件采用Pu同位素质量分数为20.8%的MOX燃料,增殖燃料组件采用0.2%富集度235U的贫铀燃料,6号设计方案可以使堆芯的初始转换比达到1.03128,且空泡反应性系数为负,初步达到超临界水冷快堆的增殖要求。进一步对堆芯的缓发中子有效份额、能谱、中子注量率、功率分布进行计算,分析研究增殖堆芯的物理特性。  相似文献   

9.
完成使用金属燃料、液态钠冷却的小型长寿命快堆设计。长寿命反应堆要求在较长的时间内堆芯能够维持临界而不需任何的倒料或换料操作。燃耗反应性补偿的设计思路为:利用金属燃料较强的增殖能力实现较大的堆芯内转换比,以减小燃耗反应性损失,同时辅以控制棒补偿。  相似文献   

10.
燃料组件的几何结构和栅格参数显著影响铅铋反应堆的物理/热工特性,采用不同几何结构燃料组件的堆芯在相同换料周期、热工限值约束下的临界尺寸、燃料装载量存在差异。本文开展小型轻量化铅铋反应堆的燃料组件几何结构研究,通过建立铅铋反应堆堆芯模型,选取棒束型、环形、蜂窝煤型燃料组件方案,比较分析了3种方案在堆芯尺寸、燃料装载量、冷却剂流通面积、包壳和气隙体积相同和在换料周期为10 a、稳态热工安全裕量基本一致条件下堆芯的燃耗特性、反应性系数、稳态热工特性参数。结果表明:相比于棒束型与环形燃料组件,蜂窝煤型燃料组件良好的稳态热工特性与较硬的中子能谱,采用蜂窝煤型燃料组件的堆芯可以实现更小的堆芯尺寸及燃料装载量,具备显著的膨胀负反馈,同时能够有效展平功率分布和降低堆芯压降,是有利于铅铋反应堆小型化及轻量化的燃料组件方案。  相似文献   

11.
小型长寿命核能系统燃料物理性能的研究   总被引:1,自引:0,他引:1  
余纲林  王侃 《核动力工程》2007,28(4):5-8,38
本文在简要说明世界上小型长寿命核能系统研究现状的基础上,提出了使用钍-铀燃料和铅-铋冷却剂构造小型长寿命堆芯的设想,并为此进行了一系列燃料物理性能的研究.对于长寿命核能系统的堆芯物理设计,使反应性随燃耗变动最小非常重要,同时应该尽可能地提高堆芯的燃耗以满足长寿命运行的需求.本文使用MCNP和MCBurn程序详细计算分析了使用不同的初始驱动燃料、不同栅格、燃料成分和类型、富集度条件下,燃料栅元的燃耗反应性变化等性能,并对其进行了能谱、转换比、富集度变化等方面的分析,经过对比初步确定了使用钍-铀燃料构造长寿命堆芯的物理条件,并以此为起点构造出一个堆芯,计算给出了反应性空泡系数等安全参数.  相似文献   

12.
ADS铅冷却剂临界装置堆芯物理设计   总被引:4,自引:4,他引:0  
为研究加速器驱动次临界反应堆系统(ADS)次临界堆芯与靶的耦合特性,以验证设计方法和计算程序,本文构建了ADS特有的快中子谱、较高能量放大系数及负温度系数的铅冷却剂临界装置堆芯,以用于开展不同富集度燃料特性、不同外源能谱与强度条件、不同实验样品的反应性影响、中子源与堆芯耦合特性等实验研究。确定了燃料元件构造、靶区结构、堆芯布置、反射层结构与价值、安全控制及反应性价值等物理参数,为下一步ADS铅冷却剂临界装置研制及实验研究提供了工程实施依据。  相似文献   

13.
为了充分利用全陶瓷微封装弥散燃料(FCM)的耐事故特性,进一步提高铅基反应堆的安全性,将FCM应用于铅基冷却剂反应堆中,给出了铅基FCM堆芯的初步概念设计,并与传统铅基UO2燃料堆芯在燃料装量、燃料利用率、能谱及反应性等方面进行了对比分析。对比结果表明,FCM对堆芯能谱有少量的慢化效果,同时需采用高富集度UO2燃料核芯以保证堆芯235U装量满足能量输出需求,采用FCM堆芯235U装量较UO2堆芯有相应降低,燃料利用率进一步提高。最后对铅基FCM堆芯布置进行功率展平优化,通过径向FCM相体积分区对堆芯功率进行了展平。计算结果显示,堆芯功率峰因子(FQ)由2.43降低至1.93,堆芯核焓升因子(FDH)由1.79降低至1.33。  相似文献   

14.
改进Flower型超临界水冷快堆初步增殖研究   总被引:2,自引:0,他引:2  
超临界水冷快堆集快堆和轻水堆两种特性。整个堆芯冷却剂流量仅为现BWR的1/8,中子能谱硬于普通PWR,故有一定的核燃料增殖能力。本文建立不同Flower型超临界水冷快堆堆芯物理模型,研究堆芯分区布置、冷却剂密度分层、seed及blanket组件P/D值设计、MOX燃料设计、燃料富集度分区分层布置、blanket内部通道采用贫铀冷却等方案,分析堆芯的空泡反应性、功率分布及增殖比。通过比较,得到了超临界水冷快堆的优化设计方案。  相似文献   

15.
铅冷行波堆具有安全性好、倒换料周期长、铀资源利用率高等突出优势,是先进核能系统的重点发展方向之一,实现反应性微小变化是铅冷行波堆堆芯方案设计的关键技术问题。本文以热功率700 MW、采用金属燃料的铅冷行波堆物理方案为研究对象,重点研究了堆芯点火区及增殖区设计参数变化对有效增殖因子(keff)的影响,分析了全寿期堆芯反应性的变化趋势。数值结果表明:点火区设计参数显著影响堆芯初始keff,点火区的易裂变核素装量越大,初始keff越大,通过调整点火区在堆芯轴向位置及其燃料富集度可有效降低反应性变化幅度;堆芯装载的可转换核素与易裂变核素之比越高,增殖产生的239Pu越多,整体增殖性能越好;增殖区越长,平衡态持续时间越长,堆芯寿期越长。本文研究结论可为铅冷行波堆堆芯物理方案设计及关键参数选择提供重要理论依据。   相似文献   

16.
铅基快堆是一种极具发展潜力的第4代核能系统,在燃料增殖和嬗变方面具有独特优势,具有良好的非能动安全特性和经济性,且有利于实现小型化,是目前国际核能领域研究的热点。本文总结了国内外主要铅基堆型,指出了小型化是铅基快堆的发展方向,同时也指出了当前铅基快堆发展所面临的主要问题。针对热工水力关键问题的5个方面,即液态铅/铅铋流动换热特性研究、堆芯/组件热工水力分析、铅池内流动换热现象研究、系统热工水力安全分析以及特殊现象的热工水力分析,对国内外研究现状展开了分析,总结了当前研究成果,并分析了研究的发展趋势以及遇到的技术瓶颈。本文可为铅基快堆的设计和热工水力分析提供一定的建议和指导。  相似文献   

17.
长循环堆芯在堆芯燃耗寿期内反应性随堆芯燃耗的变化是堆芯物理设计需要考虑的关键参数.本文以铅-铋合金冷却,U-Pu-Zr燃料组成的堆芯为研究对象,从堆芯核设计的角度研究确定堆芯装载所涉及到中子学特性的影响因素.通过对燃料初始含量、燃料栅格距径比等关键量的分析研究,给出了堆芯物理设计区域的确定方法,并通过分析给出了设计限制区域.分析结果表明,该研究方法是合适的,所得到的限制区域内的堆芯装载满足堆芯燃耗寿期和反应性控制要求.  相似文献   

18.
为满足偏远地区供电需求,提出了一种小型可运输长寿命铅铋冷却快堆(STLFR)堆芯设计方案,额定热功率为20 MW,在不换料条件下可运行18 EFPY(有效满功率年)。为减小堆芯体积,堆芯采用蜂窝煤型燃料组件,内设若干冷却剂管道,管外为燃料,实现了较高的堆芯燃料体积占比。为展平堆芯径向功率分布,将堆芯燃料区沿径向划分为三区,分别采用不同的冷却剂管道尺寸。为降低堆芯高度,设计使用含高富集度6Li的液态锂作为吸收体的液态吸收体控制系统。为降低初始剩余反应性,在堆芯控制组件与安全组件中布置两组固定式可替换吸收体,分别在堆芯燃耗1/3和2/3寿期时替换为固定式反射体。提出的堆芯设计方案在整个运行寿期内满足热工设计限值,控制系统和安全系统能独立满足堆芯控制和停堆要求。采用准静态反应性平衡方法对5种典型无保护事故工况进行分析,初步证明了堆芯具有固有安全特性。  相似文献   

19.
为满足偏远地区供电需求,提出了一种小型可运输长寿命铅铋冷却快堆(STLFR)堆芯设计方案,额定热功率为20 MW,在不换料条件下可运行18 EFPY(有效满功率年)。为减小堆芯体积,堆芯采用蜂窝煤型燃料组件,内设若干冷却剂管道,管外为燃料,实现了较高的堆芯燃料体积占比。为展平堆芯径向功率分布,将堆芯燃料区沿径向划分为三区,分别采用不同的冷却剂管道尺寸。为降低堆芯高度,设计使用含高富集度~6Li的液态锂作为吸收体的液态吸收体控制系统。为降低初始剩余反应性,在堆芯控制组件与安全组件中布置两组固定式可替换吸收体,分别在堆芯燃耗1/3和2/3寿期时替换为固定式反射体。提出的堆芯设计方案在整个运行寿期内满足热工设计限值,控制系统和安全系统能独立满足堆芯控制和停堆要求。采用准静态反应性平衡方法对5种典型无保护事故工况进行分析,初步证明了堆芯具有固有安全特性。  相似文献   

20.
熔盐快堆具有燃料增殖、核废料嬗变和固有安全性等方面的突出优点,是目前备受关注的第四代先进核能系统唯一使用液态燃料的核反应堆。熔盐快堆通常选用液态氟盐或氯盐作为燃料载体盐和冷却剂,高增殖特性是其主要特征参数之一。基于双流体熔盐堆堆芯结构,采用基于反应堆安全分析和设计的综合性模拟程序SCALE(Standardized Computer Analyses for Licensing Evaluation)对两种氟盐快堆和一种氯盐快堆在同一重金属溶解度下的U-Pu燃料增殖比进行模拟计算,对不同增殖层和反射层下的增殖比进行了模拟分析,并分析了氯盐快堆在增殖层和反射层变化时,裂变区和增殖区中子能谱的变化情况。结果表明:在相同温度、相同摩尔比下,氯盐快堆比氟盐快堆具有更高的U-Pu燃料增殖比;氯盐快堆的增殖比随着增殖层和反射层厚度的增加而增加,但是增殖比的增长速率有所减弱;氟盐快堆的增殖层在厚度尺寸较小时,其变化对增殖比有较小影响,当厚度増至60 cm时,增殖层厚度尺寸的变化几乎对增殖比没有影响;氟盐快堆的反射层尺寸的变化对增殖比没有影响;增殖层和反射层厚度的改变不影响堆芯临界状态和裂变区中子能谱。这为三种熔盐快堆的基盐选择及尺寸设计从增殖方面提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号