首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《煤炭技术》2019,(10):12-15
运用FLAC~(3D)分别建立了硬-软-硬、软-硬-软、均质硬岩和均质软岩4种顶板结构的数值计算模型,获得不同顶板结构对底板变形破坏特征的影响特征。研究结果分析表明:均质硬岩顶板类型的底板破坏深度最小,底板应力变化较平缓;软-硬-软和硬-软-硬顶板组合的底板破坏程度略大于前者;而均质软岩顶板组合的底板内易形成高应力区,位移变化最小。  相似文献   

2.
为了探究底板岩性及组合结构这一因素对采动底板变形破坏深度的影响,通过现场大量实测资料的整理分析,获得了类似均质底板和软硬岩不同组合结构底板在采动矿压作用下差异性变形破坏特征。研究结果表明:1)类似均质底板变形破坏规律相对简单,底板采动变形破坏深度主要受制于底板岩体的抗压破坏强度,总体上这种类型底板变形破坏程度具有自上至下呈由强及弱的渐次性变化特点;2)软硬岩夹层或互层底板采动变形破坏特征比较复杂,这种组合结构对底板采动变形破坏深度和程度均具有明显的控制作用,其中软弱夹层对底板破坏深度具有较强的约束效应,即软岩对上覆硬岩起到了重要的"褥垫效应",对下伏岩层产生"应力扩散效应"。研究结果揭示了底板岩性及组合结构对变形破坏深度具有重要的制约作用,对巷道支护和底板水防治均具有重要的理论和实际意义。  相似文献   

3.
为获取不同岩性的煤层底板采动破坏特征,建立了不同内摩擦角对岩体强度影响的莫尔圆解,构建了采场端部最大底板破坏深度/采空区最大底板破坏深度的比值与内摩擦角的关联公式;运用FLAC3D数值模拟软件,分析了不同岩性条件下的煤层底板塑性区、最大剪应力、弹性应变能分布特征;从能量积聚与耗散的角度,建立了煤层底板采动破坏形态的概化模型;最后,结合平朔19110工作面底板实测数据进行验证。研究结果表明,超前支承压力作用下底板岩性为软弱岩体易发生剪切破坏,而未发生剪切破坏的中硬岩或硬岩,在应力卸荷作用下仍存在进一步破坏的可能性;随着煤层底板岩体内摩擦角的不断增大,煤层底板采动破坏范围的最大值将逐渐由采场端部向采空区后方转移;与煤层底板岩性为中硬岩或硬岩相比,岩性为极软岩或软岩的煤层底板岩体在煤壁附近剪应力和弹性应变能存在明显的衰减,并向深部转移,导致采场端部塑性区范围较明显;将煤层底板采动破坏区域划分为能量释放区、能量承载区、能量平衡区,与煤层底板岩性为软弱或极软弱类型相比,中硬岩或硬岩类型下的煤层底板能量释放区分布范围较小甚至缺失,主要通过能量承载区和能量平衡区实现采动扰动能量的平衡。现场实测发现煤...  相似文献   

4.
以5-103工作面为研究对象,理论分析巷道底板塑性滑移破坏的规律,通过计算得到巷道底板最大破坏深度和破坏位置。采用FLAC3D分别模拟工作面运输巷底板软岩不同厚度围岩变形量、塑性区和最大主应力。模拟结果显示,随着底板软岩厚度的增加,底板变形破坏量增大,表明底板软岩是导致巷道底板破坏的主要原因。  相似文献   

5.
针对在层状盐岩构造中修建储库时,夹层对储库长期稳定性具有重要影响这一关键问题,建立储库三维单腔模型,通过数值试验,讨论了含不同厚度软、硬夹层的盐岩储库在不同运行内压长期作用下的稳定性,详尽分析了各种工况下的腔体收缩率,围岩塑性区及腔体最大位移分布。结果表明:随腔体含软夹层厚度增大,腔体收缩率呈略微上涨,而随硬夹层厚度增大,则出现较明显的下降。软夹层厚度的变化对围岩塑性区影响并不明显,硬夹层厚度的变化则会带来比较明显的影响,且含软、硬夹层腔体塑性区分布在夹层处存在显著差异,另外软夹层对塑性区的影响要比硬夹层小得多,且塑性区对随内压增加而减小的现象反应更为敏感,硬夹层在低压下比软夹层更容易破裂。含软夹层腔体最大位移量发生在夹层处,含硬夹层腔体最大位移量发生在盐岩处。最后综合分析发现,小厚度的硬夹层,大厚度的软夹层,对腔体的稳定性更为不利。  相似文献   

6.
为了探究硬岩夹层对组合岩石蠕变性能的影响,通过试验与数值仿真相结合的方法,分析了不同夹层数量、厚度以及间距的情况下组合岩石轴向变形的变化规律。结果表明:硬岩夹层的厚度越大、数量越多,组合岩石的蠕变量越小;硬岩夹层可以降低其影响范围内软岩的形状改变比能,进而提高软岩抵抗蠕变变形的能力,但随着夹层间距的增加,组合岩石抵抗蠕变变形的能力先增大后减小。通过类比研究,为巷道围岩注浆的时机选择提供了一定的依据。  相似文献   

7.
为研究软岩巷道在不同水平应力边界条件下底鼓变形失稳规律,以贯屯煤矿50213工作面回风巷为工程背景。根据软岩巷道底板破坏特征,运用压杆理论建立软岩巷道底板结构力学模型,通过力学分析,确定了底板失稳的判别条件及临界应力的计算方法,并采用底板岩层变形的挠曲方程推导得出底鼓量计算公式。通过相似模拟确定了不同应力状态下底板破坏机理及裂隙的动态演化过程,提出锚杆-混凝土组合结构控制底鼓的方法并应用于现场实践。研究结果表明:当加载至3.13 MPa时,巷道两侧形成应力集中区,并通过两帮传递至底板,剪切裂隙沿巷帮围岩内部发育至底板内部,该裂隙距两帮0.8 m,发育角度约45°。当加载至4.38 MPa时,底板在水平应力作用下向巷道临空面弯曲变形,底板中部产生拉伸裂隙。当应力加载至7.70 MPa时,底板破坏深度增加至1.2 m,裂隙数量增多,由于底板各分层挠度不同易产生离层裂隙,各裂隙相互贯通并向深部延伸,最大底鼓量为0.51 m,与理论计算结果基本一致。50213工作面回风巷底鼓主要是由底板岩性和应力集中所致,因此提出了以锚杆-混凝土组合结构来控制底鼓的防治措施,试验段观测结果表明,16 d后底鼓...  相似文献   

8.
综采放顶煤工作面底板应力及其破坏深度分析   总被引:2,自引:0,他引:2  
长平煤矿4302工作面为承压水上厚煤层放顶煤开采,为预防回采期间底板突水事故,对采动的工作面底板破坏深度和应力进行分析研究,据工作面地质和生产实际条件,采用弹塑性理论和回归分析方法确定了回采对底板破坏深度的影响范围,利用UDEC数值模拟软件模拟了底板破坏方式和应力分布规律,通过现场布置钻孔应力计和钻孔窥视,实测了回采期间底板应力变化规律和破坏区域。结果表明,底板岩性及其组合结构、回采工艺是影响底板破坏的主要因素,实测、理论计算、数值模拟计算得出底板破坏深度分别为6,9.50~9.75和8m,实测破坏深度小于理论计算和数值模拟结果,底板岩石强度为强—弱—强的组合结构,中部软岩层弱化了上部硬岩层应力集中,同时使下部硬岩层受力均匀,起到良好的保护底板破坏的作用。  相似文献   

9.
曙光煤矿煤层底板层理发育,1208孤岛工作面回采巷道底板受支承压力影响大,引发底板产生剪切滑移。基于岩体力学理论,计算了巷道底板的破坏深度,分析了不同阶段孤岛工作面底板破坏的区域;运用FLAC3D软件分析了巷道围岩在不同回采阶段的支承压力集中系数,根据塑性区分布特征,得出了孤岛工作面回采期间巷道的破坏类型、巷道底板的破坏类型和破坏深度。  相似文献   

10.
根据兖州某矿工作面煤层顶、底板岩层组合及结构性质特点,建立反映完整底板岩层组合的工程地质模型,通过FLAC3D数值模拟分析了煤层开采过程中底板应力及塑性区分布特征,得到了采动煤层底板变形破坏的深度。最后,结合现场该面煤层底板随不同深度钻孔内超声成像观测的变化规律,综合对比分析得出该面煤层底板破坏深度约为12 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号