首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The erosion, corrosion, and heat resistance of alloy/ion-plasma nanolayer coating compositions based on TiC and CrC carbides and TiN, CrN, ZrN, and AlN nitrides are studied. The effect of the nanolayer thickness, composition, and structure of the coatings based on the metal nitrides and carbides on the relative erosion resistance of alloy/coating compositions in a gas-abrasive quartz sand flux is studied at a sand grain size of 300–350 μm, abrasive supply rate of 200 g/min, and an angle of flux incidence of 20° (tangential flow) and 70° (near-head-on attack flow). It is shown that high erosion resistance is characteristic of 15–22 μm thick coatings that are produced by assisted deposition and consist of alternating TiN (70 nm) and CrN (70 nm) layers on a VT1-0 titanium alloy or TiC (70 nm) and CrC (70 nm) layers on an EP866 compressor steel.  相似文献   

2.
The erosion-resistant ZrN and Cr3C2 coatings intended for the protection of the titanium and steel blades in a GTE compressor are studied. The erosion resistance of the substrate–coating composition is shown to depend on the coating thickness, the deposition conditions, and the coating texture. Ion-assisted deposition changes the structure–phase state of a coating and substantially increases its erosion resistance. It is found that a nanolayer 2D TiN/CrN coating with an average nanolayer thickness of ~60 nm is the best erosion- corrosion-resistant coating for titanium alloys and that a (NiCrTiAlHf)C + CrC coating formed by ionassisted deposition is the best coating for steels. The testing of alloy VT8 compressor blades in an engine supported high protective properties of the nanolayer TiN/CrN coating.  相似文献   

3.
The effect of ion-plasma coatings made from high-hardness metal compounds on the erosion and corrosion resistance and the mechanical properties of alloy (substrate) + coating compositions is comprehensively studied. The effects of the thickness, composition, deposition conditions, and design of coatings based on metal nitrides and carbides on the relative gas-abrasive wear of alloy + coating compositions in a gas-abrasive flux are analyzed. The flux contains quartz sand with an average fraction of 300–350 μm; the abrasive feed rate is 200 g/min; and the angles of flux incidence are 20° (tangential flow) and 70° (near-head-on attack flow). Alloy + coating compositions based on VN, VC, Cr3C2, ZrN, and TiN coatings 15–30 μ m thick or more are shown to have high erosion resistance. A detailed examination of the coatings with high erosion resistance demonstrates that a zirconium nitride coating is most appropriate for protecting gas turbine compressor blades made of titanium alloys; this coating does not decrease the fatigue strength of these alloys. A chromium carbide coating is the best coating for protecting compressor steel blades.  相似文献   

4.
《钛工业进展》2018,35(6):36-40
金属基体材料表面硬质膜层在服役过程中,残余应力在膜基界面以及膜层内部界面之间的积聚会导致膜层发生界面剥落失效。以TC4钛合金基体表面Ti/TiN多层复合膜层为研究对象,探讨真空退火对复合膜层结构及性能的影响,并表征退火前后复合膜层的界面划痕失效以及抗粒子冲蚀性能。结果表明,真空退火促进了膜层内部以及膜基界面两侧原子的热扩散,使得界面结构特征明显弱化。界面状态的改变使得复合膜层的表面显微硬度降低以及膜基结合强度提高。在划痕载荷作用下,复合膜层抵抗裂纹沿界面扩展的能力得到增强。真空退火有助于提高膜层的强韧性匹配,可有效抵抗小角度冲蚀粒子的犁削以及大角度粒子冲蚀下的疲劳,因此Ti/TiN多层复合膜层表现出较好的抗冲蚀性能。  相似文献   

5.
The mass-transfer kinetics, the mechanism of formation, the tribotechnical characteristics, and the resistance to high-temperature oxidation of a coating formed on the hard alloy WC — 6% Co and on the titanium alloy VT6 by electric-spark alloying with electrode material based on TiCN — AIN with an Fe — Cr binder have been investigated. The phase distribution of the components in the coating was shown to be the same for both alloys. Electric-spark alloying of WC — Co and VT6 was found to reduce their wear by 33 and 60%, respectively. Moreover, the working temperature of the coated WC — Co alloy increased by 160 deg compared to the original surface. Translated from Poroshkovaya Metallurgiya, Nos. 5–6(413), pp. 21–29, May–June, 2000.  相似文献   

6.
Russian and non-Russian research on the surface hardening of hard tungsten-carbide alloys to improve the wear resistance is reviewed. There is great scope for improving the wear resistance and durability of hard-alloy components by surface strengthening on the basis of various coatings, including coatings with 100-nm structural components. On hard tungsten-carbide alloys, the most common coatings consist of titanium carbide TiC and nitride TiN, characterized by high lattice binding energy and high melting point. If such coatings are applied to hard-alloy tools, the frictional coefficient is reduced by a factor of 1.5–2.0 when cutting steel. The use of a TiN + ZrN ion-plasma coating reduces the frictional coefficient by a factor of 5.9. At present, multilayer coatings are widely employed. The most widespread are TiN + TiC and Al2O3 + TiC coatings. Their wear is proportional to the coating thickness. These multilayer coatings still leave room for improvement in the wear resistance of hard alloys. In Russia, the potential of hard alloys with a strength gradient from a ductile and high-strength core to a wear-resistant surface is being explored. At the Research Institute of Refractory Metals and Hard Alloys, a method has been developed for producing alloys with variable cobalt content over the thickness of the cutting insert. That permits change in alloy composition from VK20 to VK2 over the sample thickness. Correspondingly, the wear resistance of the insert’s working section is equivalent to that of VK2 alloy, while the base is able to withstand considerable flexural stress. Recently, cutting tools with a diamond coating on hard alloys have been adopted in practice. To increase the durability of hard-alloy VK inserts, strengthening based on concentrated energy fluxes may be employed. Examples include treatment of hard-alloy surfaces by γ quanta, ion beams, and laser beams, electroexplosive alloying, and electrospark strengthening.  相似文献   

7.
The coatings of the (TiCrC)-(FeCr) composite are deposited on steel and titanium alloy by plasma method. The composition, structure, and tribotechnical properties of these coatings are studied in comparison with traditional materials based on the Ni-Cr alloy. The effect of preliminary surface treatment methods, i.e., sandblasting treatment and electrospark alloying, on coating properties is examined. The fretting corrosion of coatings is investigated. It is established that coatings based on double titanium-chromium carbide have considerably greater wear resistance than that of Ni-Cr alloys at almost equal friction coefficients. It is established that electrospark alloying is competitive with traditional sandblasting treatment in environmental effect and coating-to-based adhesion. __________ Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 3–4 (454), pp. 37–45, 2007.  相似文献   

8.
The main factors limiting the application of high-temperature creep-rupture resistant titanium alloys synthesized from powder components by pressing and subsequent vacuum sintering for the manufacture of parts for gas turbine engines are analyzed. The method for synthesizing the VT1-0 alloy and an alloy whose chemical composition corresponds to the high-temperature creep-rupture resistant VT8 alloy is described. Their chemical and phase composition, strength, hardness, and distribution of doping elements are examined. Upon analysis of the composition, structure, and properties of the samples produced from the test alloys synthesized from PT5 titanium powders with different particle sizes by powder metallurgy methods, it was concluded that semi-finished products could be produced from the VT1-0 and VT8 titanium alloys. The effect of the particle size of the titanium matrix on the chemical composition of the synthesized alloys is studied. The chemical composition of the test alloy complies with the industry standard for semi-finished products of hightemperature creep-rupture resistant titanium alloys. The influence of the particle-size distribution of titanium powder on the strength, hardness, and residual porosity of the synthesized alloys is established. Regardless of the particle size of the powder mixture matrix (ranging from 40 to 400 μm), the strength, ductility, and hardness of the test VT8 alloy do not comply with the requirements of standards OST 90002–70 and OST 90006–70, which govern these properties for bars and blanks of gas turbine engine blades. It is concluded that a series of measures are required to eliminate the residual porosity and impart the blade structure to the material to improve the strength properties.  相似文献   

9.
为了提升钛双极板的导电性和耐腐蚀性,利用氮气等离子体原位渗氮法对钛片(TA2)进行表面改性,制备了系列氮化钛涂层,系统研究了反应温度和渗氮时间对涂层表面形貌、疏水性、界面导电性和耐腐蚀性的影响。结果表明,温度过高会导致氮化钛生长过快,颗粒尺寸较大;温度较低不利于表面反应,涂层不能完全覆盖钛基底;渗氮时间较短,表面生成不规则的纳米生长核,致使涂层不平整、钛基底裸露;渗氮时间过长,涂层呈阶梯堆垛状,平整度降低。650 °C下渗氮90 min制备的氮化钛涂层(TiN-650-90)均匀平整,组成为TiN0.26;TiN-650-90的水接触角提升至105.4°,表面疏水性有利于改善燃料电池的水管理性能;界面接触电阻(ICR)随加载压力增大而降低,2.75 MPa时TiN-650-90的ICR稳定至6.5 mΩ·cm2,满足美国能源部(DOE)要求(≤10 mΩ·cm2);TiN-650-90的腐蚀电流密度为0.56 μA·cm–2,–0.1 V恒电位下的电流密度为0.67 μA·cm–2,耐腐性和稳定性较钛的明显提升。该方法制备氮化钛涂层表面改性钛双极板,具有沉积温度低、速度快,疏水性、导电性和耐腐蚀性优良等优点,可为金属双极板表面改性提供方法借鉴和工艺参考。   相似文献   

10.
The mass transfer and wear resistance of both monolayer and multilayer coatings on VT3-1 alloy are examined. The coatings are deposited by electrospark alloying (ESA) with composite titanium and zirconium refractory ceramics. It is shown that the wear resistance of these electrospark-deposited coatings is 1.6 to 3 times higher in fretting corrosion in unlubricated friction as compared with the conventional WC + 3% Co coating. In addition, the multilayer structure permits four-to fivefold increase in the coating thickness as opposed to the monolayer WC + 3% Co ESA coating.  相似文献   

11.
A study was made of the kinetics of capillary absorption of ethanol in highly porous (70–75%) materials prepared from discrete fibers of titanium alloy VT6 (specimen dimensions 330×20×(0.4–1.3) mm). The fibers, 3 mm in length and 20–140 μm in diameter, were obtained by rapid solidification from the melt. Capillary transport against the force of gravity up to the equilibrium height of capillary rise was investigated in an atmosphere of saturated ethanol vapor. Experimental data on the rate of absorption were analyzed with reference to the properties of the pore space structure—effective pore size, tortuosity of the pore channels, and free surface area. The laws of capillary transport of ethanol in porous materials composed of titanium alloy VT6 fibers, discrete copper fibers, and grade VTEM-2 titanium powder were compared. It was shown that, with regard to the speed of absorption, the advantage of fiber materials over those made from powder is attributable to the less convoluted pore channels in the former. Materials Science Institute, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 1–2, pp. 67–74, January–February. 1997.  相似文献   

12.
Based on a study of the structure and composition of the composite ceramic SiC - Al2O3 - ZrO2, its tribomechanical properties and behavior in high-temperature corrosion, we recommend the material for use as sealing elements and for deposition of wear-resistant and corrosion-resistant coatings. We have studied the formation of gradient layers when the ceramic surface is modified with refractory titanium compounds TiN - TiB2 (1:1) with an Fe(Ni) - Cr - Al undercoat using concentrated solar radiation and when the steel surface is modified with laser irradiation of the SiC - Al2O3 - ZrO2 coats. We have shown that laser modification of steel by the silicon carbide-based composite increases its corrosion resistance by a factor of 4–5 at 800–900 °C. __________ Translated from Poroshkovaya Metallurgiya, Nos. 7–8(444), pp. 91–99, July–August, 2005.  相似文献   

13.
High‐rate evaporation in combination with plasma processes is a promising approach to obtain new types of steel sheet coating with improved corrosion resistance and application properties. To estimate the potential for the application of PVD‐coatings (physical vapour deposition) different coating systems for steel sheet as well as for hot‐dip or electro‐galvanized steel sheet were designed. The samples were produced on a laboratory scale using PVD processes with very high deposition rates (in the order of 1 μm s‐1) as well as high‐power plasma processes for the pre‐treatment. The relationship between the composition, microstructure and properties of the coating systems, in particular concerning corrosion protection, abrasion during forming, phosphating and paint adhesion, were studied. It was found that the corrosion resistance of galvanized steel sheets can be considerably improved by vapour deposition of metal or inorganic films with a thickness of several hundred nanometers. Investigations on vapour deposition of titanium and stainless steel coatings on steel sheets, for applications in a severely corrosive environment, showed that the corrosion resistance in relation to the coating thickness can be significantly enhanced by means of plasma activation during the vapour deposition process. Finally, an outlook on possible industrial applications including an estimation of the process costs will be presented. For certain coating systems the results look promising. Consequently, these particular coating systems will be investigated in more detail by means of using a large‐scale in‐line deposition plant for metallic strips and sheets.  相似文献   

14.
Measurements have been made on the wear resistance of ceramic cutters based on silicon nitride and bearing titanium nitride coating during the continuous machining of ShKh15 steel. The coatings were deposited by cathode sputtering. Use was made of continuous coatings and discrete ones in the form of ordered fragments. The continuous TiN coatings raise the wear resistance by a factor of 1.7, while the factor is 2.2 for the discrete TiN coatings. The performance of the tool is also improved in the case of the discrete coatings as the cutting speed and feed can be raised by comparison with tools with continuous coating.  相似文献   

15.
This article is devoted to the formation of amorphous coatings on the steel 35 surface by electrospark treatment in a mixture of crystalline granules. It is revealed by the energy dispersive X-ray spectroscopy (EDS) that formed coatings contain W, Mo, Co, and Ni in various ratios. The weight of granules of various compositions decreases by 11–16 wt % for 6-h treatment due to electric erosion. The mass transfer coefficient varies in a range from 33 to 54%. X-ray structural analysis showed the prevalence of an amorphous phase (81–99%) in the structure of deposited layers. Annealing of coatings at a temperature above 1150°C leads to the crystallization of the amorphous phase into boron carbide of the M23(C, B)6 type, as well as into α-Fe. The coatings have an increased hardness of 10–15 GPa, while their wear resistance in the dry sliding wear mode under loads of 10 and 50 N is higher than for steel 35 by a factor of 3.3 and 1.6. The coating friction coefficient is lower than for steel 35 by 13–30% and was 0.27–0.31. The wear resistance of coatings in a dry abrasive wear mode is higher by a factor of 3–5 when compared with uncoated steel 35. The best characteristics are inherent without nickel and worst are inherent without cobalt. Thus, it is established that tungsten and cobalt increase the wear resistance of iron-based amorphous alloys, while nickel and molybdenum tend to worsen their tribotechnical behavior.  相似文献   

16.
钛合金表面硬化与固体润滑处理层的电化学腐蚀行为研究   总被引:2,自引:0,他引:2  
刘道新  唐宾 《稀有金属》2005,29(1):39-42
分别利用等离子氮化技术和离子束增强沉积(IBED)技术使钛合金表面获得硬质抗磨层和MoS2,MoS2-Ti固体润滑膜层。通过电化学测试技术研究了膜层和钛合金基材在含Cl^-介质中的抗蚀性能和接触腐蚀敏感性:研究结果表明:Ti与MoS2的复合改善了MoS2膜的环境适应性,MoS2—17Ti复合膜层与钛合会接触相容;IBED TiN较钛合金电化学活性低,阳极极化行为与Ti6Al4V合金相近,与钛合金基体间电偶腐蚀敏感性低;钛合金等离子氮化处理层在NaCl水溶液中无论处于自然腐蚀电位还上弱阳极极化状态,均较钛合金电化学活性低,且与钛合金基体间电偶腐蚀敏感性低。  相似文献   

17.
The phase composition, structure, and properties of self-propagating high-temperature synthesis (SHS)-compacted materials of the Ti-C-Al-Si system are investigated. It is shown that metal-like titanium compounds can be used as cathodes for vacuum-arc evaporators. The coatings fabricated from SHS cathodes are single-phase and represent cubic titanium nitride of the (Ti, Al, Si)N composition. The volume of a microdrop phase in them is smaller by a factor of 2.5–3.0 as compared with TiN, while their microstructure is not fragmented into low-strength columnar elements; the CSR size is twice smaller than that of titanium nitride. Being approximately identically hard, the (Ti, Al, Si)N coatings substantially surpass TiN coatings in elastic and plastic failure resistance due to the lower elasticity modulus. When milling the tungsten-copper alloy, the hardness of hard-alloy milling cutters with the (Ti, Al, Si)N coating is higher by a factor of 2.4 than with the TiN coating fabricated from the titanium cathode with the magnetic plasma flow separation.  相似文献   

18.
The paper examines nanocomposite coatings based on TiN and SiCN obtained by plasma-enhanced chemical vapor deposition (PECVD) using methyltrichlorosilane (MTCS) as one of the precursors. The nanocomposite coatings demonstrate four types of structures depending on deposition modes: nc-TiN, nc-TiN/a-SiCN, nc-TiNC/nc-TiSi2/a-SiCN, and nc-TiNC/nc-TiCl2/a-SiCN. The nanohardness and elastic modulus of the coatings reach 31 and 350 GPa, respectively. The coatings on substrates of hard alloys, high-speed steel, and silicon increase the nanohardness of the base from 10 to 100%. The correlation between the H/E ratio and wear resistance is not observed. The coatings deposited at low radiofrequency powers demonstrate good adhesion to silicon substrates. It is shown that the use of MTCS as the main precursor allows one to obtain hard and wear-resistant nanocomposite coatings. __________ Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 1–2 (459), pp. 125–133, 2008.  相似文献   

19.
Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface.  相似文献   

20.
A new method for the deposition of protective coatings (wear-resistant overlaying) that are 2 to 10 mm thick and more on the surface of titanium articles is suggested, developed, approved, and patented. The method, called “SHS-arc overlaying,” combines the exothermic synthesis of adding material (AM) and argon-arc overlaying, which proceed simultaneously with the deposition of the coating. AMs made of exothermic mixtures are developed. Using this new method, protective composite coatings for titanium articles are obtained. The physicochemical, microstructural, and exploitation properties of the overlaying are investigated. Its operational characteristics exceed the characteristics of standard samples by a factor of 1.5–2.0. This new technology can be recommended for the deposition of protective coatings on products of wide indentation made of titanium alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号