首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strategy is demonstrated for simultaneous phase/size manipulation, multicolor tuning, and remarkably enhanced upconversion luminescence (UCL), particularly in red emission bands in fixed formulae of general lanthanide‐doped upconverting nanoparticles (UCNPs), namely NaLnF4:Yb/Er (Ln: Lu, Gd, Yb), simply through transition metal Mn2+‐doping. The addition of different Mn2+ dopant contents in NaLnF4:Yb/Er system favors the crystal structure changing from hexagonal (β) phase to cubic (α) phase, and the crystal size of UCNPs can be effectively controlled. Moreover, the UCL can be tuned from green through yellow and to dominant red emissions under the excitation of 980 nm laser. Interestingly, a large enhancement in overall UCL spectra of Mn2+ doped UCNPs (~59.1 times for NaLuF4 host, ~39.3 times for NaYbF4 host compared to the UCNPs without Mn2+ doping) is observed, mainly due to remarkably enhanced luminescence in the red band. The obtained result greatly benefits in vitro and in vivo upconversion bioimaging with highly sensitive and deeper tissue penetration. To prove the application, a select sample of nanocrystal is used as an optical probe for in vitro cell and in vivo bioimaging to verify the merits of high contrast, deeper tissue penetration, and the absence of autofluorescence. Furthermore, the blood vessel of lung of a nude mouse with the injection of Mn2+‐doped NaLuF4: Yb/Er UCNPs can be readily visualized using X‐ray imaging. Therefore, the Mn2+ doping method provides a new strategy for phase/size control, multicolor tuning, and remarkable enhancement of UCL dominated by red emission, which will impact on the field of bioimaging based on UCNP nanoprobes.  相似文献   

2.
Fluorescence enhancement of red and blue concurrently emitting Ba3MgSi2O8:Eu2+,Mn2+ phosphors for plant cultivation has been investigated by Dy3+ addition. The Ba3MgSi2O8:Eu2+,Mn2+,Dy3+(BMS-EMD) phosphors have two-color emissions at the wavelength peak values of 437 nm and 620 nm at the excitation of 350 nm. The two emission bands are coincident with the absorption spectrum for photosynthesis of plants. An obvious enhancement effect has been observed upon addition of Dy3+ with amount of 0.03 mol%, in which the intensities of both blue and red bands reach a maximum. The origin of red and blue emission bands is analysed. The photochromic parameters of the samples at the nearly UV excitation are tested. This fluoresence enhancement is of great significance for special solid state lighting equipment used in plant cultivation. This work has been supported by National Natural Science Foundation of China (Grant No 50872091) and the Natural Science Foundation of Tianjin, China (06YFJMJC02300, 06TXTJJC14602).  相似文献   

3.
Ce3+/Tb3+/Mn2+-codoped Sr8ZnY(PO4)7 (SZYP) white-emitting phosphors have been synthesized via solid-state reaction technology. The overlapping spectra between the excitation bands of Mn2+ and Tb3+ ions and the emission band of Ce3+ suggest that Ce3+ → Mn2+ and Ce3+ → Tb3+ energy transfer occurs. The emission hues exhibited by Ce3+/Tb3+- and Ce3+/Mn2+-codoped phosphors could be modulated from bluish to greenish region and from bluish to reddish region by simply adjusting the relative content of Ce3+/Tb3+ and Ce3+/Mn2+, respectively. SZYP:Ce3+,Tb3+,Mn2+ samples exhibited three dominant bands at 410 nm, 545 nm, and 600 nm, attributable to electronic transitions of Ce3+, Tb3+, and Mn2+ ions, respectively. Thus, color-tunable emission was achieved by accurately modulating the concentrations of Ce3+, Tb3+, and Mn2+ ions. SZYP:0.05Ce3+,0.11Mn2+,0.11Tb3+ was found to be an ideal white-light-emitting phosphor with color coordinates of (0.34, 0.33) and correlated color temperature of about 5144.83 K. The results indicate that Ce3+/Tb3+/Mn2+ -tridoped SZYP phosphors are potential single-component white-emitting candidates for application in ultraviolet- and white-light-emitting diodes.  相似文献   

4.
A method of color mixture for white light is presented with Sr3MgSi2O8:Eu2+, Mn2+ shell coated on Sr2SiO4:Eu2+ core by spray pyrolysis procedure. Upon near ultraviolet (NUV) excitation, a 550 nm band emission of Eu2+ from core host combines with the simultaneous emissions of Eu2+ at 457 nm and Mn2+ at 683 nm based on energy transfer in the shell lattice to generate warm white light with color rendering index (CRI) of 91. With such a core-shell-like structure, the re-absorption of blue light from shell layer can be effectively suppressed, and the chemical stability of the phosphor is verified experimentally to be superior to that of the Sr2SiO4:Eu2+. This new proposed phosphor provides great potential in the color mixture of blending-free phosphor converted white NUV light emitting diode (LED) devices.  相似文献   

5.
Manganese-doped LaMgAl11O19 powder has been prepared by an easy combustion method. Powder x-ray diffraction and scanning electron microscopy have been used to characterize the as-prepared phosphor. The electron paramagnetic resonance (EPR) spectrum of LaMgAl11O19:Mn2+ phosphor exhibits six-line hyperfine structure centered at g ≈ 1.973. The number of spins participating in resonance (N) and the paramagnetic susceptibility (χ) for the resonance signal at g ≈ 1.973 have been calculated as a function of temperature. The photoluminescence spectrum exhibits green emission at 516 nm, which is attributed to 4T1 → 6A1 transition of Mn2+ ions. From EPR and luminescence studies, it is observed that Mn2+ ions occupy Mg2+ sites and Mn2+ ions are located at tetrahedral sites in the prepared phosphors.  相似文献   

6.
Elucidating the mechanism that differentiates the oxygen‐evolving center of photosystem II with its inorganic counterpart is crucial to develop efficient catalysts for the oxygen evolution reaction (OER). Previous studies have suggested that the larger overpotential for MnO2 catalysts under neutral conditions may result from the instability of the Mn3+ intermediate to charge disproportionation. Here, by monitoring the surface intermediates of electrochemical OER on rutile MnO2 with different facet orientations, a correlation between the stability of the intermediate species and crystal facets is confirmed explicitly for the first time. The coverage of the Mn3+ intermediate is found to be 11‐fold higher on the metastable (101) surfaces compared to (110) surfaces, leading to the superior OER activity of (101) surfaces. The difference in OER activity may result from the difference in surface electronic states of Mn3+, where interlayer charge comproportionation of Mn2+ and Mn4+ to generate two Mn3+ species is favored on (101) facets. Considering the fact that the OER enzyme accommodates Mn3+ stably during the Kok cycle, the enhanced OER activity of the rutile MnO2 catalyst with a metastable surface highlights the importance of mimicking not only the crystal structure but also the electronic structure of the targeted natural enzyme.  相似文献   

7.
Nanostructured Mn3O4 with an average crystallite of ~10 nm is synthesized by the controlled reduction of potassium permanganate using hydrazine. The phase purity, average crystallite/particle size, morphology and state of agglomeration were studied using X-ray diffraction (XRD), Transmission Electron microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses. Nitrogen sorption studies give a specific surface area of 62 m2/g and also reveal the mesoporous nature. The presence of Mn4+ ions is inferred from the Fourier Transform Infra-Red (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS) studies. The decrease in the c/a ratio obtained from XRD analysis also indicates the presence of Mn4+ ions. Electrochemical analysis was done on a symmetric capacitor with nanostructured Mn3O4 as the active material and 6 M KOH solution as the electrolyte. Cyclic voltammograms revealed pseudocapcitive behavior with specific capacitance values falling sharply with scan rate. The power density and energy density values obtained from chornopotentiograms are fairly large and indicate the potential application in the field of supercapacitors.  相似文献   

8.
The electrochemical properties and phase stability of the multi‐component olivine compound LiMn1/3Fe1/3Co1/3PO4 are studied experimentally and with first‐principles calculation. The formation of a solid solution between LiMnPO4, LiFePO4, and LiCoPO4 at this composition is confirmed by XRD patterns and the calculated energy. The experimental and first‐principle results indicate that there are three distinct regions in the electrochemical profile at quasi‐open‐circuit potentials of 3.5 V, ~4.1 V, and ~4.7 V, which are attributed to Fe3+/Fe2+, Mn3+/Mn2+, and Co3+/Co2+ redox couples, respectively. However, exceptionally large polarization is observed only for the region near 4.1 V of Mn3+/Mn2+ redox couples, implying an intrinsic charge transfer problem. An ex situ XRD study reveals that the reversible one‐phase reaction of Li extraction/insertion mechanism prevails, unexpectedly, for all lithium compositions of LixMn1/3Fe1/3Co1/3PO4 (0 ≤ x ≤ 1) at room temperature. This is the first demonstration that the well‐ordered, non‐nanocrystalline (less than 1% Li–M disorder and a few hundred nanometer size particle) olivine electrode can be operated solely in a one‐phase mode.  相似文献   

9.
宋俊  孙亮  李建  马健  王达健 《光电子快报》2014,10(5):343-346
A solid-solution-phase Ba1.75Ca1.25MgSi2O8: Eu2+, Mn2+ phosphor in the photosynthetic action spectrum with dual band emissions at 438 nm and 660 nm is fabricated. X-ray diffraction (XRD) confirms the presence of the solid-solution phase. With the supporting information from the diffuse reflection spectrum, a feasible way to obtain higher energy-transfer (ET) efficiency is attained, and the ET efficiency of Eu2+-Mn2+ is enhanced to 76%. The mechanism of this enhancement is owing to variation of the solid solution composition of Ca3MgSi208 and Ba3MgSi2Os, which contributes to the extension of the critical distance. Temperature-dependent results show an en- hancement which is attributed to Ca. These enhancements show great promise for improving coo-lighting devices.  相似文献   

10.
It is established that annealing of ion-implanted thin Ge0.96Mn0.04 films with a thickness of 120 nm induces an increase in the microwave resistivity and a change in the mechanism of dephasing of charge carriers. The effect of annealing on the microwave transport properties of the thin films is due to the diffusion-controlled aggregation of dispersed Mn2+ impurity ions to form Ge3Mn5 clusters.  相似文献   

11.
Na superionic conductor of Na3MnTi(PO4)3 only containing high earth-abundance elements is regarded as one of the most promising cathodes for the applicable Na-ion batteries due to its desirable cycling stability and high safety. However, the voltage hysteresis caused by Mn2+ ions resided in Na+ vacancies has led to significant capacity loss associated with Mn reaction centers between 2.5–4.2 V. Herein, the sodium excess strategy based on charge compensation is applied to suppress the undesirable voltage hysteresis, thereby achieving sufficient utilization of the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. These findings indicate that the sodium excess Na3.5MnTi0.5Ti0.5(PO4)3 cathode with Ti4+ reduction has a lowest Mn2+ occupation on the Na+ vacancies in its initial composition, which can improve the kinetics properties, finally contributing to a suppressed voltage hysteresis. Based on these findings, it is further applied the sodium excess route on a Mn-richer phosphate cathode, which enables the suppressed voltage hysteresis and more reversible capacity. Consequently, this developed Na3.6Mn1.15Ti0.85(PO4)3 cathode achieved a high energy density over 380 Wh kg−1 (based on active substance mass of cathode) in full-cell configurations, which is not only superior to most of the phosphate cathodes, but also delivers more application potential than the typical oxides cathodes for Na-ion batteries.  相似文献   

12.
Mn-based materials for aqueous energy storage are reaching the capacity ceiling due to the limited Mn4+/Mn3+ redox. The disproportionation of Mn3+ often occurs, forming soluble Mn2+ and thus leading to severer capacity decays. Here, an amorphous manganese phosphate material [AMP, Na1.8Mn4O1.4(PO4)3] is fabricated using an electrochemical method for the first time. Benefitting from the open framework and the insoluble nature of Mn2+ in AMP, the Mn3+/Mn2+ and Mn4+/Mn3+ redox couples can participate in the charge storage processes. The AMP electrode shows a high capacity of 253.4 mAh g−1 (912.4 F g−1 or 912.4 C g−1) at the current density 1 A g−1 and good rate capability. Experimental results indicate AMP experiences a mixed charge storage mechanism (i.e., cation intercalation and conversion reactions) in Na2SO4 electrolyte. Besides, electrolyte engineering can effectively prevent the decomposition of AMP during cycling test, achieving capacity retention of 97% in 5000 cycles. Importantly, AMP can accommodate different cations (e.g., Mg2+, Ca2+, etc.), exhibiting great potential for aqueous energy storage.  相似文献   

13.
Interaction of host magnons with impurity magnetic excitations in antiferromagnetic crystals CoCO3 and CoF2 containing substitutional impurity amounting to 10?4 and (4±2)×10?3 (by weight) Mn2+ respectively, has been investigated in the wavelength range 0.35–0.8 mm in a magnetic field of up to 20 T. In the CoCO3+10?4 Mn2+ crystal the impurity line was observed to merge with the AFMR line, which is peculiar to incoherent spectrum rearrangement. In the CoF2+4×10?3 Mn2+ crystal the cross splitting of spectrum was revealed as the impurity lower lying Zeeman level approached the AFMR low frequency mode, peculiar to coherent spectrum rearrangement. In both cases the impurity line intensity increases very much as it approaches the spin-wave band of the crystal. The constant of resonance interaction of the impurity excitation with magnons is determined for CoF2+Mn2+ to be m=18 cm?1.  相似文献   

14.
We are engaged in a systematic study of the optical and laser properties of Cr2+-doped cadmium chalcogenides. Previously, we demonstrated quasi-continuous wave lasing from Cr2+-doped Cd0.55Mn0.45Te with slope efficiencies as high as 64% and a laser tuning range from 2,170–3,010 nm. In this paper, we report the first demonstration of lasing from Cr:CdTe at room temperature. Pulsed-laser operation was obtained with a free-running spectrum centered at 2,535 nm. The slope efficiency of the laser was low (∼1%) because of large parasitic losses at the laser wavelength. The spectroscopic properties of Cr:CdTe are favorable for laser applications because of a large emission cross section (∼2.5 × 10−18 cm2) and a high emission-quantum yield (∼88%). In addition, CdTe can easily incorporate Cr ions either through melt growth or diffusion doping. Along with our results on Cr2+:CdTe, we report on the optical properties of several other Cr2+-doped II-VI semiconductors (ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, Cd0.9Zn0.1Te, Cd0.65Mg0.35Te, Cd0.85Mn0.15Te, and Cd0.55Mn0.45Te) and compare them for applications as solid-state laser materials.  相似文献   

15.
A series of BaLi2Al2Si2N6 (BLASN): xEu2+ phosphors are successfully synthesized and their crystal structure and luminescence properties under varying hydrostatic pressures are reported herein. Structure variation is analyzed using in situ high‐pressure X‐ray diffraction and Rietveld refinements. Based on decay curves and Gaussian fitting of emission spectra, the presence of two photoluminescence centers is demonstrated. BaLi2Al2Si2N6: 0.01Eu2+ exhibits an evident peak position shift from 532 to 567 nm with an increase in pressure to ≈20 GPa. The possible factors and mechanisms for the variations are studied in detail. At a pressure of 16 GPa, BLASN: Eu2+ realizes a narrow yellow emission with a full width at half maximum of ≈70 nm. The addition of BLASN: Eu2+ (16 GPa) to the commercial white light‐emitting diodes combination consisting of an InGaN chip, β‐SiAlON: Eu2+, and red K2SiF6:Mn4+, can increase the color gamut by ≈15%, demonstrating the promising potential of pressure‐driven BLASN: Eu2+ for wide‐color gamut spectroscopy applications. Moreover, the emission shifts arising from pressure variation and the distinct color changes enable its potential utility as an optical pressure sensor; the material exhibits high pressure sensitivity (dλ/dP ≈ 1.58 nm GPa?1) with the advantage of visualization.  相似文献   

16.
《Optical Fiber Technology》2006,12(2):185-195
Tellurite fibers with 7500 ppm Er3+ concentration and diverse 2500–15,000 ppm Tm3+ concentrations were manufactured, and their amplified spontaneous emission (ASE) intensities 1550 nm band around were obtained for 980 and 790 nm pump laser. Maxima 187 nm bandwidth at −3 dB points using Er3+–Tm3+ co-doped tellurite optical fibers pumping at 790 nm was obtained, and energy transfer (ET) process between 4I13/2 Er3+ and 3F4 Tm3+ levels related with the amplifier quantum efficiency was studied from experimental and calculated lifetime.  相似文献   

17.
ZnGa2O4 and ZnGa2O4: Mn2+/Eu3+ with uniform nanosphere (diameter about 400 nm) morphology have been synthesized via a facile hydrothermal approach. XRD, Raman spectra, XPS, FT‐IR, SEM, TEM, photoluminescence (PL), and cathodoluminescecne (CL) spectra are used to characterize the resulting samples. The controlled experiments indicate the dosage of trisodium citrate and pH values are responsible for shape determination of the ZnGa2O4 products. The possible fast crystallization–dissolution–recrystallization formation mechanism for these nanospheres is presented. Under UV light and low‐voltage electron beam excitation, ZnGa2O4, ZnGa2O4: Mn2+ and ZnGa2O4: Eu3+ emit bright blue, green, and red luminescence, respectively. Based on density functional theory calculations from first principles, the green and red emission are caused by the Mn 3d and Eu 4f electronic structures, respectively. Besides, the dependence of the CL intensity on the calcination temperature and electrical conductivity of the samples is presented. The ZnGa2O4: Mn2+ nanospheres have a higher CL intensity than that of bulk samples under the same excitation condition. The realization of three primary colors from a single host material suggests that full color display based on ZnGa2O4 nanospheres might be achievable, showing that these materials have potential applications in lighting and display fields.  相似文献   

18.
Purely gallium oxide-based memristors (GOMRs) show great potentials in resistive random-access-memory (RRAM) due to their chemical stability and resistive switching characteristics with Roff/Ron ratios up to 102; indeed, GOMRs with higher Roff/Ron ratios and more functionalities are more expected. In this study, ferromagnetic amorphous gallium oxide (a-GMO) films with a tunable two-level system of Mn dopants, i.e., Mn2+ and Mn3+ ions, are prepared by scalable polymer assisted deposition. The Pt/a-GMO/Pt memristors show a high Roff/Ron ratio of 103, at least one order of magnitude higher than those of previously reported purely GOMRs, thanks to the abundant oxygen vacancies (VOs)-induced low resistance state and Mn2+-enhanced high resistance state. Meanwhile, magnetic modulation (MM) is realized electrically in the a-GOMRs during the RS, through the tuning of bound magnetopolarons (BMPs) by bias voltage-induced VOs variations, which may be useful for quaternary information coding. Notably, the transition between Mn3+ and Mn2+ions is observed in the GOMRs, which is closely related to the variations of VO concentration and BMP amount, providing an in situ tool to probe the VO-induced RS and BMP-dependent MM. The results give insights to Mn-doped GOMRs and may be useful for design, fabrication, and testing of multifunctional high-performance RRAMs.  相似文献   

19.
Owing to the forthcoming global energy crisis, the search for energy-saving materials has intensified. Over the past two decades, mechanically induced luminescent materials have received considerable attention as they can convert waste into useful components, for instance, the conversion from stress into light. However, this material features many constraints that limit its widespread application. Herein, a strategy to improve the mechanoluminescence (ML) of ZnO by embedding it in a ZnF2:Mn2+ matrix is introduced. Upon dynamic excitation via an external stress, the reddish-yellow ML is confirmed to originate from the 4T1 (4G) → 6A1 (6S) transition of the optically active Mn2+ center. Moreover, the sample with the strongest ML contains the appropriate amount of ZnF2 (ZnF2:ZnO = 7:3). By performing density functional theory calculations, a possible ML-enhancement mechanism is elucidated, which indicates the formation of a ZnF2/ZnO:Mn2+ heterojunction. Considering the unique characteristics of ML, its promising applications are demonstrated in various mechano-optics scenarios, including flexible and stretchable optoelectronics, advanced self-powered displays, e-skins/e-signatures, and anti-counterfeiting, without the use of external light/electric-incentive sources. The study significantly increases the variety of ML materials and is expected to strengthen the foundation for the future development of smart mechanically controlled devices and energy-saving systems.  相似文献   

20.
Here, the facile synthesis of fluorescent ZrO2:Eu3+ nanoparticles with luminescence quantum yield of up to 8.7% that can be easily dispersed in organic solvents and utilized for the preparation of organic/inorganic volume holographic gratings is presented. The nanoparticles are prepared through a one‐step solvothermal process resulting in spherical particles with a mean size of 4 nm that were highly crystalline directly after the synthesis, without any need for calcination treatment. Detailed luminescence studies of the nanoparticles as a function of Eu3+ content demonstrate that the dopant concentration and its site symmetry play an important role in the emissive properties and lifetime of the luminescent centers. It is shown that the luminescence quantum yield of the colloidal ZrO2:Eu3+ nanoparticles increases with dopant concentration up to a critical concentration of 11 mol% while the luminescence lifetime is shortened from 1.8 to 1.4 ms. Holographic photopolymerization of suitable monomer mixtures containing the luminescent nanoparticles demonstrated the ability to inscribe volume Bragg gratings (refractive index contrast n1 up to 0.011) with light‐emissive properties, evidencing the high suitability of this approach for the fabrication of tailored nanomaterials for elaborate and demanding applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号