首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the production and characterization of polymer nanocomposites with single-walled carbon nanotubes having improved mechanical properties and exceptional nanotube alignment. High-pressure carbon monoxide nanotubes (HiPco) were efficiently distributed in polystyrene (PS) and polyethylene (PE) with a twin-screw compounder. Nanotube concentrations were 1, 5, 10, and 20 wt% in PE composites and 0.7 wt% in PS composites. PE composites were melt-spun into fibers to achieve highly aligned nanotubes. Polarized Raman spectroscopy shows that the degree of alignment increases with decreasing fiber diameter and decreases with increasing nanotube loading. The orientation distribution function of a 1 wt% HiPco/PE composite had a full width at half-maximum of approximately 5 degrees. The elastic modulus increases up to 450% relative to PE fibers for 20 wt% nanotube loading at an intermediate fiber diameter of 100 microns.  相似文献   

2.
This paper studies the failure of CNT/polymer composites by combining micromechanics model and finite element simulation. A computational model of composite of adequate size is employed so the interactions between nanotubes embedded in the matrix can be taken into account. The effects of nanotube waviness and random nanotube distribution relative to aligned straight nanotubes are investigated. The computational results indicate that the nanotube waviness tend to reduce the elastic modulus but increase the ultimate strain of a composite. The randomness of nanotube distribution tends to reduce both the composite elastic modulus and tensile strength. The damage initiation and evolution in composites with random wavy nanotubes have also been analyzed.  相似文献   

3.
With a continuous improvement of the production techniques for carbon nanofibers and carbon nanotubes along with an improvement of the available qualities of the materials, these reinforcements have been introduced into polymers, ceramics and metals. While in the field of polymers first success stories have been published on carbon nanofiller reinforcements, up to now metals containing these types of nanofillers are still a topic of intensive research. Basically a similar situation were found in those days, when micron sized carbon fibers came on the market. Today many applications of carbon fiber reinforced composites are existing, while metals reinforced with conventional carbon fibers are still only found in niche applications.  相似文献   

4.
Carbon fibers are widely used as reinforcements in composite materials because of their high specific strength and modulus. Today, a number of ultrahigh strength polyacrylonitrile (PAN)-based (more than 6?GPa), and ultrahigh modulus pitch-based (more than 900?GPa) carbon fibers have been commercially available. In contrast, carbon nanotube (CNT) with the extremely high tensile strength have attracted attention as reinforcements. An interesting technique to modify the carbon fiber is CNT grafting on the carbon fiber surface. CNT-grafted carbon fibers offer the opportunity to add the potential benefits of nanoscale reinforcement to well-established fibrous composites to create micro-nano multiscale hybrid composites. In the present study, the tensile properties of CNT grown on T1000GB PAN- and K13D pitch-based carbon fibers have been investigated. Single filament tensile test at gauge lengths of 1, 5, and 25?mm were conducted. The effect of gauge length on tensile strength and Weibull modulus of CNT-grafted PAN- and pitch-based carbon fibers were evaluated. It was found that grafting of CNT improves the tensile strength and Weibull modulus of PAN- and pitch-based carbon fibers with longer gauge length (≥5?mm). The results also clearly show that for CNT-grafted and as-received PAN- and pitch-based carbon fibers, there is a linear relation between the Weibull modulus and the average tensile strength on log–log scale.  相似文献   

5.
In this paper we investigate the mechanical behavior of carbon fiber composites, where the carbon fibers are coated with radially aligned carbon nanotubes. For this purpose we develop a general micromechanics method for fiber composites, where fibers are coated with radially aligned microfibers (“fuzzy fiber” composites). The mechanical effective properties are computed with a special extension of the composite cylinders method. The in-plane shear modulus is determined using an extended version of the Christensen’s generalized self consistent composite cylinders method. The proposed methodology provides stress and strain concentration tensors. The results of the method are compared with numerical approaches based on the asymptotic expansion homogenization method. The combination of composite cylinders method and Mori–Tanaka method allows us to compute effective properties of composites with multiple types of “fuzzy fibers”. Numerical examples of composites made of epoxy resin, carbon fibers and carbon nanotubes are presented and the impact of the carbon nanotubes length and volume fraction in the overall composite properties is studied.  相似文献   

6.
A multistep homogenization method is adopted to compute the effective moduli of carbon nanotube reinforced composites. The composite is assumed to be reinforced with isolated individual fibers and clustered fibers. A uniform agglomeration model is introduced assuming constant carbon nanotube cluster size throughout the matrix. Agglomeration volume fraction—a critical parameter in the simulation—is considered to be an explicit function of inter-particle distance and quality of dispersion of fibers. The micromechanics model also incorporates random fiber orientation using a statistical approach. It is seen that these parameters reduce the stiffening effect of carbon nanotubes significantly in the composite.  相似文献   

7.
Carbon nanotubes have mechanical properties that are far in excess of conventional fibrous materials used in engineering polymer composites. Effective reinforcement of polymers using carbon nanotubes is difficult due to poor dispersion and alignment of the nanotubes along the same axis as the applied force during composite loading. This paper reviews the mechanical properties of carbon nanotubes and their polymer composites to highlight how many previously prepared composites do not effectively use the excellent mechanical behaviour of the reinforcement. Nanomechanical tests using atomic force microscopy are carried out on simple uniaxially aligned carbon nanotube-reinforced polyvinyl alcohol (PVA) fibres prepared using electrospinning processes. Dispersion of the carbon nanotubes within the polymer is achieved using a surfactant. Young's modulus of these simple composites is shown to approach theoretically predicted values, indicating that the carbon nanotubes are effective reinforcements. However, the use of dispersant is also shown to lower Young's modulus of the electrospun PVA fibres.  相似文献   

8.
The tailoring of the thermoelectric properties (the sign and magnitude of the absolute thermoelectric power) was achieved by composite engineering. The techniques involved the choice of the reinforcing fibers (continuous or short) in a structural composite and the choice of the particulate filler between the laminae in a continuous fiber composite. The tailoring resulted in thermoelectric structural composites, including continuous carbon fiber polymer-matrix composites and short fiber cement-matrix composites. In addition, it resulted in thermocouples in the form of structural composites. The choice of fibers impacted the thermoelectric behavior in the fiber direction of the composite. The choice of interlaminar filler impacted the thermoelectric behavior in the through-thickness direction.  相似文献   

9.
The unique and exceptional physical properties of carbon nanotubes have inspired their use as a filler within a polymeric matrix to produce carbon nanotube polymer composites with enhanced mechanical, thermal and electrical properties. A powerful method of synthesising nanofibers comprising these polymer composites is electrospinning, which utilises an applied electric stress to draw out a thin nanometer-dimension fiber from the tip of a sharp conical meniscus. The focussing of the flow due to converging streamlines at the cone vertex then ensures alignment of the carbon nanotubes along the fiber axis, thus enabling the anisotropic properties of the nanotubes to be exploited. We consider the work that has been carried out to date on various aspects encompassing preprocessing, synthesis and characterisation of these electrospun polymer composite nanofibers as well as the governing mechanisms and associated properties of such fibers. Particular attention is also dedicated to the theoretical modelling of these fiber systems, in particular to the electrohydrodynamic modelling of electrospinning polymer jets.  相似文献   

10.
Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5?wt% F-CNTs and 1.0?wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.  相似文献   

11.
In this work, a coarse-grained (CG) model of carbon nanotube (CNT) reinforced polymer matrix composites is developed. A distinguishing feature of the CG model is the ability to capture interactions between polymer chains and nanotubes. The CG potentials for nanotubes and polymer chains are calibrated using the strain energy conservation between CG models and full atomistic systems. The applicability and efficiency of the CG model in predicting the elastic properties of CNT/polymer composites are evaluated through verification processes with molecular simulations. The simulation results reveal that the CG model is able to estimate the mechanical properties of the nanocomposites with high accuracy and low computational cost. The effect of the volume fraction of CNT reinforcements on the Young's modulus of the nanocomposites is investigated. The application of the method in the modeling of large unit cells with randomly distributed CNT reinforcements is examined. The established CG model will enable the simulation of reinforced polymer matrix composites across a wide range of length scales from nano to mesoscale.  相似文献   

12.
Dense carbon nanotubes (CNTs) were grown uniformly on the surface of carbon fibers and glass fibers to create hierarchical fibers by use of floating catalyst chemical vapor deposition. Morphologies of the CNTs were investigated using scanning electronic microscope (SEM) and transmission electron microscope (TEM). Larger diameter dimension and distinct growing mechanism of nanotubes on glass fiber were revealed. Short carbon and glass fiber reinforced polypropylene composites were fabricated using the hierarchical fibers and compared with composites made using neat fibers. Tensile, flexural and impact properties of the composites were measured, which showed evident enhancement in all mechanical properties compared to neat short fiber composites. SEM micrographs of composite fracture surface demonstrated improved adhesion between CNT-coated fiber and the matrix. The enhanced mechanical properties of short fiber composites was attributed to the synergistic effects of CNTs in improving fiber–matrix interfacial properties as well as the CNTs acting as supplemental reinforcement in short fiber-composites.  相似文献   

13.
基于高强、高韧、高模和压拉平衡为特征的第三代先进复合材料的需求,综述了连续纤维增强树脂复合材料纵向压缩强度预测模型的发展历程。基于纤维微屈曲、纤维扭结带、联合预测模型及渐进损伤失效模型,分别讨论了连续纤维增强树脂复合材料压缩失效机制,并在联合预测模型基础上,探究了碳纤维(直径、模量、体积分数、初始偏角)、树脂基体(弹性模量、剪切模量)及纤维/树脂界面三要素对连续纤维增强树脂复合材料纵向压缩强度和压缩失效形式的影响。   相似文献   

14.
以酚醛树脂为基体,以平纹碳布和短切碳纤维两种结构形式的碳纤维为增强剂,制备碳纤维增强的碳/酚醛复合材料。采用氧/乙炔烧蚀实验对复合材料的耐烧蚀性能进行了对比性研究,采用电子拉力试验机对复合材料的弯曲性能进行表征,采用扫描电镜对复合材料烧蚀形面进行观察,并通过固体火箭发动机对复合材料的烧蚀性能进行考核验证。研究结果表明:以这两种结构形式的碳纤维为增强剂制备的碳/酚醛复合材料,其氧乙炔质量烧蚀率的大小与碳纤维丝束的大小具有正相关的特性,碳纤维丝束越小碳纤维质量烧蚀率越低,当碳纤维增强剂处于单丝状态时,复合材料的氧乙炔质量烧蚀率达到最低为0.046 g/s,并且碳纤维的型号规格对复合材料氧乙炔质量烧蚀率的影响变小。固体火箭发动机实验表明,单丝状态下的碳纤维/酚醛复合材料的抗烧蚀冲刷性能明显优于束状碳纤维/酚醛复合材料。  相似文献   

15.
Carbon nanotubes, a kind of high order fullerenes, offers remarkable electronic as well as mechanical properties, e.g., an extremely high Young’s modulus of TPa order has been reported. This suggests the suitability of carbon nanotubes as novel fiber materials for metal matrix composites. The authors demonstrate that Ti/ nanotube composites show a large increase in hardness and Young’s modulus as compared to pure Ti. This makes the composite an attractive advanced material for future applications.  相似文献   

16.
The nature of nanoscale reinforcements in the carbon nanotube composites indicates nanocomposite properties are heavily dependent on the micro/nano-structure and morphology. Macroscopic parameter-based properties estimation may lead to deviation as large as 30%. In this paper, a modified shear-lag model, combined with probability statistical theory and composites morphology, is established to investigate the elastic properties of single wall carbon nanotubes (SWNTs)-reinforced polymer composites. The computational results indicated that elastic modulus of nanocomposite was remarkably dependent on the micro/nano-structure, including diameter, length, and orientation of the dispersed SWNTs. Microstructure-dependent shape factor and orientation effect factor played a key role on achieving high-performance nanocomposites. Elastic modulus of nanocomposite with well-dispersed carbon nanotubes was more susceptible to the orientation. Similarly, nanocomposite modulus was more subject to the dispersion influence when SWNTs were well-aligned. The maximal modulus was located in the zone of small rope diameters and small orientation angles when adequate interfacial bonding was provided. The computational results were also compared with experimental outcome and demonstrated good consistence.  相似文献   

17.
By engineering the fiber/matrix interface, the properties of the composite can be changed significantly. In this work, we increased the effective surface area of the fiber/matrix interface, to facilitate additional stress transfer between fibers and matrix, by grafting carbon nanotubes on to carbon fibers (in the form of carbon fabric) by two different methods: (1) chemical vapor deposition (CVD) method and (2) a purely chemical method. With the CVD process, carbon nanotubes (CNT) were directly grown on carbon fiber substrate using chemical vapors. For the chemical method, CNT with carboxyl groups were grafted on functionalized carbon fiber via a chemical reaction. The morphology of CNT/carbon fibers was examined by scanning electron microscope (SEM) which revealed uniform coverage of carbon fibers with CNT in both of CVD method and chemical grafting method. CNT-grafted woven carbon fibers were used to make carbon/epoxy composites, and their mechanical properties were measured using three-point bending and tension tests which showed that those with CNT-grafted carbon fiber reinforcements using the CVD process has 11 % higher tensile strength compared to those containing carbon fibers modified with the chemical method. Also, composites with CNT-grafted carbon fibers with chemical method showed 20 % higher tensile strength compared to composites with unmodified carbon fibers. The results of tensile test revealed that both CVD and chemical grafting could significantly improve the mechanical properties of the carbon fiber composites.  相似文献   

18.
A surface-draw method to fabricate recyclable carbon nanotube/polyvinyl butyral (CNT/PVB) composite fibers is reported. This method is effective for both single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube. The CNT mass content of CNT/PVB composite fibers can vary from 0 to 80 wt.%, which is higher than most CNT/polymer composites reported to date. The diameter of the composite fibers can be controlled in the range of 10-100 μm, with essentially unlimited draw length. The composite fibers with 7.4 wt.% SWCNTs showed optimal tensile properties. Compared with pure PVB fibers, the tensile strength, failure strain, and elastic modulus of the composite fiber have improved about 127%, 27%, and 73%, respectively. In addition, SWCNT/PVB composites with 66.7 wt.% SWCNTs have the highest conductivity of 42.9 S m−1. More importantly, the major benefit is the “greenness” of the method, which involves environment friendly ethanol-water solvent with no functionalization of the nanotube required, and only simple apparatus are needed. The CNT/PVB composite fibers obtained can be dissolved in ethanol solution and reformed with the surface draw method without any additional treatment; and the material properties after recycle is comparable to those fabricated in the first round.  相似文献   

19.
Carbon fiber reinforced epoxy composite laminates are studied for improvements in quasi static strength and stiffness and tension-tension fatigue cycling at stress-ratio (R-ratio) = +0.1 through strategically incorporating amine functionalized single wall carbon nanotubes (a-SWCNTs) at the fiber/fabric-matrix interfaces over the laminate cross-section. In a comparison to composite laminate material without carbon nanotube reinforcements there are modest improvements in the mechanical properties of strength and stiffness; but, a potentially significant increase is demonstrated for the long-term fatigue life of these functionalized nanotube reinforced composite materials. These results are compared with previous research on the cyclic life of this carbon fiber epoxy composite laminate system reinforced similarly with side wall fluorine functionalized industrial grade carbon nanotubes. Optical and scanning electron microscopy and Raman spectrometry are used to confirm the effectiveness of this strategy for the improvements in strength, stiffness and fatigue life of composite laminate materials using functionalized carbon nanotubes.  相似文献   

20.
为改善碳纤维表面性能以及碳纤维/树脂复合材料的界面性能,对PAN基高模量碳纤维(HMCF)表面进行聚合物涂层处理。研究了不同潜伏性固化剂含量的聚合物涂层对HMCF表面以及碳纤维/树脂复合材料的界面性能的影响。IR分析表明,聚合物涂层与纤维或树脂基体发生了化学反应。扫描电镜和动态机械热分析的结果也说明,聚合物涂层能够提高...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号