首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Surface roughness of the workpiece is an important parameter in machining technology. Wiper inserts have emerged as a significantly class of cutting tools, which are increasingly being utilized in last years. This study considers the influence of the wiper inserts when compared with conventional inserts on the surface roughness obtained in turning. Experimental studies were carried out for the carbon steel AISI 1045 because of its great application in manufacturing industry. Surface roughness is represented by different amplitude parameters (Ra, RzD, R3z, Rq, Rt, Ra/Rq, Rq/Rt, Ra/Rt). With wiper inserts and high feed rate it is possible to obtain machined surfaces with Ra < 0.8 μm (micron). Consequently it is possible to get surface quality in workpiece of mechanics precision without cylindrical grinding operations.  相似文献   

2.
The quantitative determination of surface roughness is of vital importance in the field of precision engineering. This paper presents an experimental study of the roughness analyses for the flat and spherical surfaces of machined metal in order to compare the roughness data taken from the cloud data produced by the stylus type profilometer and two optical-based measurement instruments, namely the infinite focus microscope and the confocal laser scanning microscope.In this experimental study, the roughness measurements for fifteen flat and six spherical surfaces were repeated six times using three different measurement instruments. Great care was paid to measure the same location for each measurement. For the comparison of the measurement techniques, the same measurement process was applied to the flat and spherical surfaces individually, and the configurations of the measurement instruments (filter type, cut-off, resolution etc.) were synchronized. Ra, two-dimensional (2D) roughness parameter and Sa, three-dimensional (3D) roughness parameter were also compared. The measurement results for the samples having spherical surfaces indicated a considerably high difference in values taken from the stylus profilometer and two optical-based measurement instruments in contrast to those for flat surfaces.  相似文献   

3.
A simple and inexpensive method using fiber optic displacement sensor is proposed for measurements of tooth surface roughness based on the intensity modulation technique. A light beam was launched onto a tooth surface via a bundled fiber. The reflected light from the surface was collected and measured as a function of lateral distance to estimate the roughness of the surface. The system’s roughness measurement capability was successfully tested on teeth surfaces of varying surface texture. In the measurement, the average surface roughness, Ra for the canine, molar, hybrid composite resin and artificial teeth surfaces were estimated to be approximately 121, 62.6, 39 and 37.6 μm, respectively. The experimental results indicated the capability of implementation of the displacement sensor for the imaging of the tooth surface profile as well as a micron-size roughness estimator with a measurement error of less than 2.35%.  相似文献   

4.
The roughness effect on the frequency of frictional sound   总被引:2,自引:0,他引:2  
Dry sliding of two bodies in contact generates a wide range of effects like friction, wear, heat and sound among others. The main interest of this study is in the frequency characteristics of the generated sound.In the past, frequency spectrum and sound pressure level with relation to surface topography (surface roughness in particular), have been studied mainly for concentrated contacts like stylus or hemispherical tip pin on a rough surface. Studies on flat–flat contacts were mainly focused on the topography of contacting surfaces and its relation to occurrence or non-occurrence of squeal (high pitch, high sound pressure level sound) in brake systems.The present study aims to clarify the effect of surface roughness on the frequency of non-squealing frictional sound generated in dry flat–flat sliding contact.Sound was generated by the dry contact in rubbing by hand of two rectangular cross-section stainless-steel plates having similar surface roughness. The roughness of the contacting surfaces varied in the range Rz=0.8–12.4 μm. The sound spectra had 5 peaks (P1, P2, P3, P4 and P5) in order of increasing frequency and it was found that the peak frequency was shifted when the roughness of the rubbed surfaces changed. The first peak P1 was most sensitive to change of surface roughness and it shifted from 3.0 to 4.5 kHz when the maximum surface roughness changed from Rz=10.9 to . When the surface was relatively rough, this peak was close to the first bending natural frequency of the plate at 2.377 kHz.  相似文献   

5.
This paper investigates the feasible machining of zirconium oxide (ZrO2) ceramics, in the hard state, via milling by diamond coated miniature tools (from here on briefly indicated as meso-scale hard milling). The workpiece material is a fully sintered yttria stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP). Diamond coated WC mills, 2 mm in diameter, four flutes and large corner radius (0.5 mm) are chosen as cutting tools, and experiments are conducted on a state-of-the-art micro milling machine centre. The influence of cutting parameters, including axial depth of cut (ap) and feed per tooth (fz), on the achievable surface quality is studied by means of a one-factor variation experimental design. Further tests are also conducted to monitor the process performance, including surface roughness, tool wear and machining accuracy, over the machining time. Mirror quality surfaces, with average surface roughness Ra below 80 nm, are obtained on the machined samples; the SEM observations of the surface topography reveal a prevailing ductile cutting appearance. Tool wear initiates with delamination of the diamond coating and progresses with the wear of the WC substrate, with significant effect on the cutting process and its performance. Main applications of this research include three dimensional surface micro structuring and superior surface finishing.  相似文献   

6.
This paper focused on optimizing the cutting conditions for the average surface roughness (Ra) obtained in machining of high-alloy white cast iron (Ni-Hard) at two different hardness levels (50 HRC and 62 HRC). Machining experiments were performed at the CNC lathe using ceramic and cubic boron nitride (CBN) cutting tools on Ni-Hard materials. Cutting speed, feed rate and depth of cut were chosen as the cutting parameters. Taguchi L18 orthogonal array was used to design of experiment. Optimal cutting conditions was determined using the signal-to-noise (S/N) ratio which was calculated for Ra according to the “the-smaller-the-better” approach. The effects of the cutting parameters and tool materials on surface roughness were evaluated by the analysis of variance. The statistical analysis indicated that the parameters that have the biggest effect on Ra for Ni-Hard materials with 50 HRC and 62 HRC are the cutting speed and feed rate, respectively. Additionally, the optimum cutting conditions for the materials with 50 HRC and 62 HRC was found at different levels.  相似文献   

7.
Compared to conventional methods, laser engraving is the most effective technique in the machining of hard materials that have a complex geometry. Therefore, laser based machining is widely used in many industries like mold making, and the manufacture of automotive, electronics and biomedical parts. The present study investigates the machinability of hard metal produced with powder metallurgy and puts forward a new approach relating to the laser engraving of P/M metals. The main objective of this study is to determine the impact of laser engraving process on Vanadis 10. For this purpose, three process parameters – namely effective scan speed, frequency, and laser effective power – were correlated with the surface roughness (Ra) and engraving depth (D). The Taguchi and linear regression were used in the analysis. The experiments were performed in accordance with an L9 orthogonal array. Based on the S/N ratio for Ra and D, the optimal condition was found as SS3F2P1 for Ra and SS1F2P3 for D. It was found that scan speed has a statistically significant effect on both Ra and D. Furthermore, a mathematical model for both Ra and D was established and estimated using linear regression. The model was also tested using different experimental conditions than existing ones. The results obtained from the new experimental conditions show that the predicted models could explain the process.  相似文献   

8.
In this study, the prediction of surface roughness heights Ra and Rt of turned surfaces was carried out using neural networks with seven inputs, namely, tool insert grade, workpiece material, tool nose radius, rake angle, depth of cut, spindle rate, and feed rate. Coated carbide, polycrystalline and single crystal diamond inserts were used to conduct 304 turning experiments on a lathe, and surface roughness heights of the turned surfaces were measured. A systematic approach to obtain an optimal network was employed to consider the effects of network architecture and activation functions on the prediction accuracy of the neural network for this application. The reliability of the optimized neural network was further explored by predicting the roughness of surfaces turned on another lathe, and the results proved that the network was equally effective in predicting the Ra and Rt values of the surfaces machined on this lathe as well.  相似文献   

9.
As the two most important indexes of bearing raceway, surface roughness and roundness have significant influence on bearing noise. Some researchers have carried out studies in this field, however, reason and extent of the influence of raceway surface geometric characteristics on bearing running noise are not perfectly clear up to now. In this paper, the raceway of 6309 type bearing's inner and outer ring is machined by floating abrasive polishing adopting soft abrasive pad. Surface roughness parameters, arithmetical mean deviation of the profile Ra, the point height of irregularities Rz, maximum height of the profile Rmax and roundness fof raceways, are measured before and after machining, and the change rules of the measured results are studied. The study results show that the floating abrasive polishing can reduce the surface geometric errors of bearing raceway evidently. The roundness error is reduced by 25%, Rm~x value is reduced by 35.5%, Rz value is reduced by 22% and Ra value is reduced by 5%. By analyzing the change of the geometrical parameters and the shape difference of the raceway before and after machining, it is found that the floating abrasive polishing method can affect the roundness error mainly by modifying the local deviation of the raceway's surface profile. Bearings with different raceway surface geometrical parameter value are assembled and the running noise is tested. The test results show that Ra has a little, Rmax and Rz have a measurable, and the roundness error has a significant influence on the running noise. From the viewpoint of controlling bearings' running noise, raceway roundness error should be strictly controlled, and for the surface roughness parameters, R,n~x and Rz should be mainly controlled. This paper proposes an effective method to obtain the low noise bearing by machining the raceway with floating abrasive polishing after super finishing.  相似文献   

10.
M.S. Selvam  V. Radhakrishnan 《Wear》1974,30(2):179-188
The variation of groove wear profile, built up edge adhering to the machined surface and surface roughness have been studied. The correlation between the surface roughness (Ra and Rt), groove wear and built up edge is discussed.  相似文献   

11.
Thermally sprayed WC-Co coatings on steel rods were machined by grinding and turning using diamond tools, and thermally sprayed Inconel 625 coatings on steel rods were machined by turning using various WC tools. Four of these samples were selected for surface characterization using a stylus roughness tester. The results show that precision-machined WC-Co and Inconel-625 surfaces can be identified as self-affine fractals in the stochastic sense within the correlation length. The root-mean-square roughness (R q ) depends on the scale of cut-off length (=sampling length in this paper) as a power law. The R q of the machined WC-Co surface was found to be dependent on the scale of cut-off length rather than the scale of evaluation length. The roughness exponent is a very useful parameter and can be used to predict the roughness value of the surfaces at any scale length, if the scale is within the correlation length and provided that one such value of a scale is known. It may be suitable to compare surfaces using roughness exponents, even if different cut-off lengths or scanning scales are used in the measurements to obtain roughness exponents.  相似文献   

12.
The closed‐form solutions of surface roughness parameters for a theoretical profile consisting of elliptical arcs are presented. Parabolic and simplified approximation methods are commonly used to estimate the surface roughness parameters for such machined surface profiles. The closed‐form solution presented in this study reveals the range of errors of approximation methods for any elliptical arc size. Using both implicit and parametric methods, the closed‐form solutions of three surface roughness parameters, R t , R a , and R q , were derived. Their dimensionless expressions were also studied and a single chart was developed to present the surface roughness parameters. This research provides a guideline on the use of approximate methods. The error is smaller than 1.6% when the ratio of the feed and major semi‐axis of the elliptical arc is smaller than 0.5. The closed‐form expressions developed in this study can be used for the surface roughness modeling in CAD/CAM simulations.  相似文献   

13.
Conventional grinding of silicon substrates results in poor surface quality unless they are machined in ductile mode on expensive ultra-precision machine tools. However, precision grinding can be used to generate massive ductile surfaces on silicon so that the polishing time can be reduced immensely and surface quality improved. However, precision grinding has to be planned with reliability in advance and the process has to be performed with high rates of reproducibility. Therefore, this work reports the empirical models developed for surface parameters R a, R max, and R t with precision grinding parameters, depths of cut, feed rates, and spindle speeds using conventional numerical control machine tools with Box–Behnken design. Second-order models are developed for the surface parameters in relation to the grinding parameters. Analysis of variance is used to show the parameters as well as their interactions that influence the roughness models. The models are capable of navigating the design space. Also, the results show large amounts of ductile streaks at depth of cut of 20?μm, feed rate of 6.25?mm/min, and spindle speed of 70,000?rpm with a 43-nm R a. Optimization experiments by desirability function generate 37-nm R a, 400-nm R max, and 880-nm R t with massive ductile surfaces.  相似文献   

14.
In precision machining, a high quality machined surface cannot be achieved without using a diamond tool, due to the deterioration of workpiece surface integrity. Burnishing process is often used to improve the surface integrity by minimizing the roughness of the machined surface. For any given cutting tool-workpiece combination, the surface roughness depends on a parameter known as relative tool sharpness (RTS), which is quantified as the ratio of undeformed chip thickness (a) to tool edge radius (r). To achieve burnishing-like surface quality from precision machining, it is necessary to understand the material deformation behaviour in machining. Moreover, the quality of the machined surface is also directly related to the formation of μ-chip and its geometry. Thus, in this study, an attempt has been undertaken to develop the behavioural chip formation mechanics for the transition from unstable to the stable regime. Orthogonal microcutting experiments have been conducted with Al alloy (Al 6082) workpiece to investigate the micro-mechanics of chip perforation and to develop the chip stability mapping. Furthermore, the quantitative assessment criterion has been adopted to determine the material flow stress, which augmented the investigation of the burnishing-like deformation behaviour. By appraising the factors like machined surface integrity, compressive flow stress and improvement of surface roughness (Ra) profile, a ‘burnishing-like’ finishing zone has been identified. Additionally, SEM and EDX analyses have been performed to study the elemental composition of μ-chips, which allowed to validate the transition phenomena of chip perforation from incomplete (unstable) to complete (stable) chip formation. The applicability of this novel study lies in its ability to produce superior quality machined surface without requiring a secondary finishing operation and thus, improving the performance of precision machining.  相似文献   

15.
In this study we investigated the sliding velocity dependency of the coefficient of friction for a Si-containing diamond-like carbon (DLC-Si) film in an automatic transmission fluid (ATF) under a wide range of contact pressures. The DLC-Si film and a nitrided steel with a surface roughness, RzJIS, of around 3.0 μm were used as disk specimens. A high-carbon chromium steel (JIS-SUJ2) bearing ball was used as a ball specimen. Friction tests were conducted using a ball-on-disk friction apparatus under a wide range of sliding velocites (0.1-2.0 m/s) and contact pressures (Pmax: 0.42-3.61 GPa) in ATF. The friction coefficients for the nitrided steel had a tendency to decrease with an increase in sliding veloicity under all the contact pressure conditions; however, the friction coefficients for the DLC-Si film were stable with respect to sliding velocities under all the contatct pressures. These results indicate that the DLC-Si film suppresses the stick-slip motion during sliding againt steel in ATF, which is a desired frictional characteristic for the electromagnetic clutch disks used under lubrication. Furthermore, the DLC-Si film showed a higher wear resistance and lower aggression on the steel ball specimen than the nitrided steel. There were less hydrodynamic effects on the friction coefficient for the DLC-Si film possibly due to maintenance of the initial surface roughness and its poorer wettability with the fluid. X-ray photoelectron spectroscopy (XPS) analysis of the sliding surfaces revealed that the adsorption film derived from the succinimide on the sliding surfaces of the DLC-Si film and the mating steel ball also contributed to the sufficient and less sliding-velocity-dependant friction coefficients.  相似文献   

16.
Variation of roughness parameters on some typical manufactured surfaces   总被引:1,自引:0,他引:1  
A number of specimen surfaces, including machined surfaces and calibration standards, are examined by a stylus instrument on-line to a microcomputer. For each measuement on each specimen 14 roughness parameters are computed for each of 10 profiles, and the mean and standard deviation of each parameter is calculated. Variations of up to 15% are found even on calibration standards, and 50% variations or larger are found on many machined surfaces. Increasing the range setting and decreasing the cut-off are both found to increase scatter. Using a skid has little effect. Measuring with the lay increases the scatter. Decreasing the sampling interval has no effect on Ra and Rq roughness but increase Rz and similar roughness and makes texture parameters ‘shape’.  相似文献   

17.
Y.F. Gao  K.-S. Kim  Y.T. Cheng 《Wear》2006,261(2):145-154
The goal of this paper is to provide the foundation for an analysis of contact between elastic-plastic solids, whose surface roughness is idealized with a Weierstrass profile. To this end, we conduct a parametric study of the plastic deformation and residual stress developed by the two-dimensional contact between a flat, rigid platen and an elastic-perfectly plastic solid with a sinusoidal surface. Our analysis shows that the general characteristics of the deformation can be characterized approximately by two parameters: α = a/λ, where a is the half-width of the contact and λ is the period of the surface waviness; ψ = E*g/σYλ, where E* and σY are the effective modulus and yield stress of the substrate, respectively, and g is the amplitude of the surface roughness. Depending on the values of these parameters, we identify eight general types of behavior for the asperity contacts: (a) elastic, elastic-plastic or fully plastic isolated Hertz type contacts; (b) elastic, or elastic-plastic non-Hertzian isolated contacts; and (c) elastic, elastic-plastic or fully plastic, interacting contacts. Relationships between contact pressure, contact size, effective indentation depth and residual stress are explored in detail in each regime of behavior. Implications on rough surface contacts are discussed.  相似文献   

18.
With the advance of contemporary technology, high precision surface finishing techniques for optical glasses are of great concern and developing to meet the requirements of the effective industrialized processes. Not only the used tools but also process parameters have great influence on the surface roughness improvements. In this paper, surface roughness improvement of Zerodur optical glass using an innovative rotary abrasive fluid multi-jet polishing process has been presented. For the same purpose, a tool for executing ultra precision polishing was designed and manufactured. Taguchi's experimental approach, an L18 orthogonal array was employed to obtain the optimal process parameters. ANOVA analysis has also been carried out to determine the significant factors. It was observed that about a 98.33% improvement on surface roughness from (Ra) 0.360 μm to (Ra) 0.006 μm has been achieved. The experimental results show that a surface finished achieved can satisfy the requirements for optical-quality surface (Ra < 12 nm). In addition, the influence of significant factors on surface roughness improvement has been discussed in this study.  相似文献   

19.
Noncontact roughness measurement of turned parts using machine vision   总被引:1,自引:0,他引:1  
The surface roughness of turned parts is usually measured using the conventional stylus type instruments. These instruments, although widely accepted, have several limitations such as low speed measurement, contacting in nature, requiring vibration-free environment, etc. Machine vision methods of roughness measurement are being developed worldwide due to their inherent advantages, including noncontact measurement, high information content, rapid measurement, and surface measurement capability. In past research, area-based light scattering method and gray scale line intensity measurement have been developed for roughness assessment using machine vision. Such methods, however, produced redundant data when applied to measure roughness of turned parts. In this paper, an alternative method of roughness measurement using the 2-D profile extracted from an edge image of the workpiece surface is proposed. Comparison with a stylus type instrument shows a maximum difference of 10% in the measurement of average roughness R a using the vision method.  相似文献   

20.
In this paper, results from an optical technique for measuring surface roughness using image analysis of speckle pattern images are presented. The technique coined as statistical properties of binary images (SPBI) utilizes the combined effects of speckle and scattering phenomena. The speckle patterns obtained with a He–Ne laser were binarized and examined. The parameters such as bright and dark regions and their ratios obtained from this model to evaluate the surface roughness were compared with the surface roughness parameter Ra obtained from a profilometer. It was found that there is a strong relationship between these parameters and Ra, especially in the range of λ<Ra<2λ where λ is He–Ne laser wavelength. Although, it is a relative method, it has great potential to be used for in-process measurement and automation due to the simplicity of optical system used. The proposed method for the surface roughness combined with a non-contact optical measuring system is applied to samples from 0.5825 to 1.9 μm of steel (CK 45) through CNC face-milling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号