首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 h. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Crosslinked tyrosinase in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, was stable enough for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic and organic contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.  相似文献   

3.
Inorganic nanocarriers have shown their high performance in disease theranostics in preclinical animal models and further great prospects for clinical translation. However, their dissatisfactory biodegradability and pre‐drug leakage with nonspecificity to lesion sites significantly hinders the possible clinical translation. To solve these two critical issues, a framework‐engineering strategy is introduced to simultaneously achieve enhanced biodegradability and controllable drug releasing, based on the mostly explored mesoporous silica‐based nanosystems. The framework of mesoporous silica is engineered by direct Mg doping via a generic dissolution and regrowth approach, and it can transform into the easy biodegradation of magnesium silicate nanocarriers with simultaneous on‐demand drug release. Such magnesium silicate nanocarriers can respond to the mild acidic environment of tumor tissue, causing the fast breaking up and biodegradation of the silica framework. More interesting, the released Mg2+ can further activate Mg2+‐dependent DNAzyme on the surface of hollow mesoporous magnesium silicate nanoparticles (HMMSNs) to cleave the RNA‐based gatekeeper, which further accelerates the release of loaded anticancer drugs. Therefore, enhanced anticancer efficiency of chemotherapeutic drugs assisted by the biodegradable intelligent HMMSNs is achieved. The high biocompatibility of nanocarriers and biodegradation products is demonstrated and can be easily excreted via feces and urine guaranteeing their further clinical translation.  相似文献   

4.
A glucose-mediated drug delivery system would be highly satisfactory fordiabetes diagnosis since it can intelligently release drug based on blood glucose levels.Herein,a glucose-responsive drug delivery system by integrating glucose-responsivepoly(3-acrylamidophenylboronic acid)(PAPBA)functionalized hollow mesoporous silicananoparticles(HMSNs)with transcutaneous microneedles(MNs)has been designed.Thegrafted PAPBA serves as gatekeeper to prevent drug release from HMSNs atnormoglycemic levels.In contrast,faster drug release is detected at a typicalhyperglycemic level,which is due to the change of hydrophilicity of PAPBA at highglucose concentration.After transdermal administration to diabetic rats,an effectivehypoglycemic effect is achieved compared with that of subcutaneous injection.Theseobservations indicate that the designed glucose-responsive drug delivery system has apotential application in diabetes treatment.  相似文献   

5.
A facile ammonia-atmosphere pre-hydrolysis post-synthetic route that can uniformly and selectively deposit Fe(2) O(3) nanoparticles in the predefined mesopores (5.6 nm) of a bimodal (2.3, 5.6 nm) mesoporous carbon matrix is demonstrated. The mesoporous magnetic Fe(2) O(3) @C encapsulates show excellent performance for arsenic capture with remarkable adsorption capacity, fast uptake rate, easy magnetic separation, and good cyclic stability.  相似文献   

6.
Hollow mesoporous silica nanoparticles (HMSNs) have become an attractive drug carrier because of their unique characteristics including stable physicochemical properties, large specific surface area and facile functionalization, especially made into intelligent drug delivery systems (DDSs) for cancer therapy. HMSNs are employed to transport traditional anti-tumor drugs, which can solve the problems of drugs with instability, poor solubility and lack of recognition, etc., while significantly improving the anti-tumor effect. And an unexpected good result will be obtained by combining functional molecules and metal species with HMSNs for cancer diagnosis and treatment. Actually, HMSNs-based DDSs have developed relatively mature in recent years. This review briefly describes how to successfully prepare an ordinary HMSNs-based DDS, as well as its degradation, different stimuli-responses, targets and combination therapy. These versatile intelligent nanoparticles show great potential in clinical aspects.  相似文献   

7.
Chemotherapy has been widely used for treatment to malignant cancer, such as hepatocellular carcinoma (HCC). Chemotherapeutic effect was not often efficient to achieve totally tumor ablation due to the poor cellular uptake and drug resistance. To address these problems, a novel nanoplatform was constructed based on nontoxic mesoporous silica nanoparticles (MSNs) for a combined chemo/photothermal therapy to enhance tumor cell accumulation and promote toxicity of chemotherapeutic drugs. Prepared MSNs were consisted of Au nanoshell for photothermal conversion and a first-line anti-HCC drug-sorafenib (SO) for chemotherapy. The SO-Au-MSNs could help SO accumulate more in hepatic cancer cells. Under near infrared irradiation, SO-Au-MSNs exerted a high cell inhibition rate which could be attributed to the enhanced toxicity of SO under hyperthermia and synergistic chemo/photothermal therapy. SO-Au-MSNs showed a good compatibility as well as efficient cell cytotoxicity. Overall, SO-Au-MSNs would be a promising candidate for further enhancing the antitumor effect on HCC.  相似文献   

8.
The design of hollow mesoporous nanostructures for cascade catalytic reactions can inject new vitality into the development of nanostructures. In this study, we report a versatile cooperative template-directed coating method for the synthesis of hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres with varying compositions (ZrO2 content from 0 to 100%), high surface areas (465 m2·g-1) and uniform mesopores. In particular, the hexadecylamine (HDA) used in the coating procedure serves as a soft template for silica@mesostructured metal oxide core-shell nanosphere formation. By a facile solvothermal treatment route with an ammonia solution and calcination in air, the silica@mesostructured zirconium titanium oxide spheres can be converted into highly uniform hollow zirconium titanium oxide spheres. By simply replacing hard template silica nanospheres with core-shell silica nanocomposites, the synthesis approach can be further used to prepare yolk-shell mesoporous structures through the coating and etching process. The approach is similar to the preparation of mesoporous silica nanocomposites from the self-assembly of the core, the soft template cetyltrimethylammonium bromide (CTAB) and a silica precursor and can be extended as a general method to coat mesoporous zirconium titanium oxide on other commonly used hard templates (e.g., mesoporous silica spheres, mesoporous organosilica ellipsoids, polymer spheres, and carbon nanospheres). The presence of highly permeable mesoporous channels in the zirconium titanium oxide shells has been demonstrated by the reduction of 4-nitrophenol with yolk-shell Au@mesoporous zirconium titanium oxide as the catalyst. Moreover, a cascade catalytic reaction including an acid catalyzed step and a catalytic hydrogenation to afford benzimidazole derivatives can be carried out very effectively by using the accessible acidity of the yolk-shell structured mesoporous zirconium titanium oxide spheres containing a Pd core as a bifunctional catalyst, which mak  相似文献   

9.
In the intrinsic pathway of apoptosis, stresses of mitochondrial reactive oxygen species (mitoROS) might be sensed as more effective signals than those in cytosol, as mitochondria are the major sources of reactive oxygen species (ROS) and pivotal components during cell apoptosis. Mitochondrial superoxide dismutase (SOD2) takes the leading role in eliminating mitoROS, and inhibition of SOD2 might induce severe disturbances overwhelming the mitochondrial oxidative equilibrium, which would elevate the intracellular oxidative stresses and drive cells to death. Herein, we report a general strategy to kill cancer cells by targeted inhibition of SOD2 using 2-methoxyestradiol (2-ME, an inhibitor for the SOD family) via a robust mitochondria-targeted mesoporous silica nanocarrier (mtMSN), with the expected elevation of mitoROS and activation of apoptosis in HeLa cells. Fe304@MSN was employed in the mitochondria-targeted drug delivery and selective inhibition of mitochondrial enzymes, and was shown to be stable with good biocompatibility and high loading capacity. Due to the selective inhibition of SOD2 by 2-ME/mtMSN, enhanced elevation of mitoROS (132% of that with free 2-ME) was obtained, coupled with higher efficiency in initiating cell apoptosis (395% of that with free 2-ME in 4 h). Finally, the 2-ME/mtMSN exhibited powerful efficacy in targeted killing of HeLa cells by taking advantage of both biological recognition and magnetic guiding, causing 97.0% cell death with only 2 Dg/mL 2-ME/mtMSN, hinting at its great potential in cancer therapy through manipulation of the delicate mitochondrial oxidative balance.  相似文献   

10.
Three-dimensionally (3D) ordered and wormhole-like mesoporous iron oxides (denoted as Fe-KIT6 and Fe-CA) were respectively prepared by adopting the 3D ordered mesoporous silica KIT-6-templating and modified citric acid-complexing strategies, and characterized by a number of analytical techniques. It is shown that the Fe-KIT6-400 and Fe-CA-400 catalysts derived after 400°C-calcination possessed high surface areas (113-165 m(2)/g), high surface adsorbed oxygen concentrations, and good low-temperature reducibility, giving 90% conversion below 189 and 208°C for acetone and methanol oxidation at 20,000 mL/(g h), respectively. It is believed that the good catalytic performance of Fe-CA-400 and Fe-KIT6-400 was related to factors such as higher surface area and oxygen adspecies concentration, better low-temperature reducibility, and 3D mesoporous architecture.  相似文献   

11.
In this study, mesoporous silica nanoparticles (MSNs) composed of MCM-41 were synthesized and modified with amine groups (i.e., NH2) to form NH2/MCM-41, which was loaded with curcumin (CUR) to form CUR@NH2/MCM-41 to create an efficient carriers in drug delivery systems (DDSs). The three samples (i.e., pure MCM-41, NH2/MCM-41, and CUR@NH2/MCM-41) were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transition electron microscopy (TEM), and a thermogravimetric analyzer (TGA). The study investigated the effect of the carrier dose, CUR concentration, pH, and contact time on the drug loading efficiency (DLE%) by adsorption. The best DLE% for MCM-41 and NH2/MCM-41 was found to be 15.78 and 80%, respectively. This data demonstrated that the Langmuir isotherm had a greater correlation coefficient (R2) of 0.9840 for MCM-41 and 0.9666 for NH2/MCM-41 than the Freundlich and Temkin isotherm models. A pseudo-second-order kinetic model seems to fit well with R2 = 0.9741 for MCM-41 and R2 = 0.9977 for NH2/MCM-41. A phosphate buffer solution (PBS) with a pH of 7.4 was utilized to study CUR release behavior. As a result, the full release after 72 h was found to have a maximum of 74.1% and 29.95% for pure MCM-41 and NH2/MCM-41, respectively. The first-order, Weibull, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic release models were applied to releasing CUR from CUR@MCM-41 and CUR@NH2/MCM-41. The Weibull kinetic model fit well, with R2 = 0.944 and 0.96912 for pure MCM-41 and NH2/MCM-41, respectively.  相似文献   

12.
13.
Surface-enhanced Raman scattering (SERS) imaging has emerged as a promising tool for guided cancer diagnosis and synergistic therapies, such as combined chemotherapy and photothermal therapy (chemo-PTT). Yet, existing therapeutic agents often suffer from low SERS sensitivity, insufficient photothermal conversion, or/and limited drug loading capacity. Herein, a multifunctional theragnostic nanoplatform consisting of mesoporous silica-coated gold nanostar with a cyclic Arg-Gly-Asp (RGD)-coated gold nanocluster shell (named RGD–pAS@AuNC) is reported that exhibits multiple “hot spots” for pronouncedly enhanced SERS signals and improved near-infrared (NIR)-induced photothermal conversion efficiency (85.5%), with a large capacity for high doxorubicin (DOX) loading efficiency (34.1%, named RGD/DOX–pAS@AuNC) and effective NIR-triggered DOX release. This nanoplatform shows excellent performance in xenograft tumor model of HeLa cell targeting, negligible cytotoxicity, and good stability both in vitro and in vivo. By SERS imaging, the optimal temporal distribution of injected RGD/DOX–pAS@AuNCs at the tumor site is identified for NIR-triggered local chemo-PTT toward the tumor, achieving ultraeffective therapy in tumor cells and tumor-bearing mouse model with 5 min of NIR irradiation (0.5 W cm−2). This work offers a promising approach to employing SERS imaging for effective noninvasive tumor treatment by on-site triggered chemo-PTT.  相似文献   

14.
15.
A general technique for efficient surface modification of silicon nanocrystals is highly desirable for the development of silicon quantum dots (SiQDs) as fluorescent probes for biological applications. Herein, a facile microwave-assisted hydrosilylation process for the preparation of stable SiQDs in a single step is presented. FTIR spectroscopy indicates that molecules with various terminal functionalities, such as alcohol, alkyl groups, and carboxylic acid, are grafted successfully onto the surface of silicon nanocrystals. The dispersibility of such SiQDs is clearly dependent on the terminal functional groups of the grafted molecules. In addition, the as-prepared SiQDs show excellent cell compatibility, photoluminescence properties, and stability, and their use as long-term intracellular fluorescent probes is also demonstrated. It is envisaged that this facile and effective method for the stabilization and functionalization of SiQDs with tailored wetting and chemical properties will enable wide application of SiQDs in a number of areas.  相似文献   

16.
Macrophage-centered therapeutic approaches that rely on immune modulation of tumor associated macrophages (TAMs) from a pro-tumorigenic phenotype (M2) to an anti-tumorigenic phenotype (M1) have facilitated a paradigm shift in macrophage immunotherapy. However, limited clinical success has been achieved due to the low response rates observed in different types of cancers. The ability to measure immune response in real time is critical in order to differentiate responders from non-responders; however, there are currently no platforms to monitor real-time macrophage immunotherapy response. Hence, there is an immediate need to develop imaging techniques that can longitudinally monitor macrophage immunotherapy response. Nitric oxide (NO) produced as a result of activation of macrophages to an anti-tumorigenic state is considered as a hallmark of M1 and can be a direct indication of response. In this study, a NO nanoreporter (NO-NR) is reported that enables real-time monitoring of macrophage immunotherapy drugs in vitro and in vivo. Furthermore, it is observed that sustained inhibition of colony stimulating factor 1 receptor (CSF1R) using a CSF1R inhibitor–NO-NR system leads to enhanced efficacy and better imaging signal. In conclusion, a first-of-its-kind NO nanoreporter tool is reported that can be used as an activatable imaging agent to monitor macrophage immunotherapy response in real time.  相似文献   

17.
Hexagonal-phase NaYF(4):Yb(3+),Er(3+) up-conversion nanocrystals (UCNCs) are synthesized by a combination of refluxing and hydrothermal treatment. This strategy leads to only a slight increase in particle size, from 4.5 to ca. 10 nm, during the cubic-to-hexagonal phase transition. The hexagonal UCNCs can be internalized by HeLa cells and exhibit visible emission in the cells under near-infrared excitation.  相似文献   

18.
Tumor-associated macrophages (TAMs) play an important role in tumor development and progression.In particular,M2 TAMs can promote tumor growth by facilitating tumor progression and malignant behav-iors.Selectively targeted elimination of M2 TAMs to inhibit tumor progression is of great significance for cancer treatment.Iron oxide nanoparticles based magnetic hyperthermia therapy (MHT) is a classical approach to destroy tumor tissue with deep penetration depth.In this study,we developed a typical M2 macrophage-targeted peptide (M2pep) functionalized superparamagnetic iron oxide nanoparticle(SPIO) for magnetic resonance imaging (MRI)-guided MHT in an orthotopic breast cancer mouse model,The obtained multifunctional SPIO-M2pep with a hydrodynamic diameter of 20 nm showed efficient targeting capability,high transverse relaxivity (149 mM-1 s-1) and satisfactory magnetic hyperthermia performance in vitro.In vivo studies demonstrated that the SPIO-M2pep based MRI can monitor the distri-bution of nanoparticles in tumor and indicate the suitable timing for MHT.The M2 macrophage-targeted MHT significantly reduced the tumor volume and the population of pro-tumoral M2 TAMs in tumor.In addition,the SPIO-M2pep based MHT can remodel the tumor immune microenvironment (TIME).The multifunctional SPIO-M2pep with M2 macrophage-targeting ability,high magnetic hyperthermia effi-ciency,MR imaging capability and effective role in remodeling the TIME hold great potential to improve clinical cancer therapy outcomes.  相似文献   

19.
Objective: This study was performed to investigate a novel pH-responsive nanocarrier based on modified nano graphene oxide (nGO) to promote the acid-triggered intracellular release of a poorly soluble drug, FTY720.

Methods: To synthesize a drug conjugated to modified nGO, first the polyethylene glycol (PEG) was conjugated to nGO, then the produced PEG-nGO was functionalized with the anticancer drug, FTY720, through amide bonding. It was characterized by the scanning electron microscopy (SEM), the atomic force microscopy (AFM), the Fourier transform infrared (FTIR) spectroscopy and the UV–vis spectroscopy. In vitro drug release of the FTY720-conjugated PEG-nGO was evaluated at pH 7.4 and 4.6 PBS at 37?°C. Furthermore, the antineoplastic action of unloaded and drug-loaded carrier against the human breast adenocarcinoma cell line MCF7 was explored using MTT and BrdU assays.

Results: Characterization methods indicated successful drug deposition on the surface of nGO. In vitro, drug release results revealed a significantly faster release of FTY720 from PEG-nGO at acidic pH, compared with physiological pH. The proliferation assays proved that the unloaded nGO had no significant cytotoxicity against MCF7 cells, while free FTY720- and FTY720-loaded PEG-nGO had an approximately equal cytotoxic effect on the MCF7 cells. It was found that the extended release characteristic of FTY720 was well fitted to Korsmeyer–Peppas model and the release profile of FTY720 from PEG-nGO is diffusion controlled.

Conclusion: PEGylated GO can act as a pH-responsive drug carrier to improve the efficacy of anticancer drug delivery.  相似文献   

20.
Molecular imaging significantly transforms the field of biomedical science and facilitates the visualization, characterization, and quantification of biologic processes. However, it is still challenging to monitor cell localization in vivo, which is essential to the study of tumor metastasis and in the development of cell‐based therapies. While most conventional small‐molecule fluorescent probes cannot afford durable cell labeling, transfection of cells with fluorescent proteins is limited by their fixed fluorescence, poor tissue penetration, and interference of autofluorescence background. Here, a bioresponsive near‐infrared fluorescent probe is reported as facile and reliable tool for real‐time cell tracking in vivo. The design of this probe relies on a new phenomenon observed upon fluorobenzene‐conjugated fluorescent dyes, which can form complexes with cytosolic glutathione and actively translocates to lysosomes, exhibiting enhanced and stable cell labeling. Fluorobenzene‐coupled hemicyanine, a near‐infrared fluorophore manifests to efficiently staining tumor cells without affecting their invasive property and enables persistent monitoring of cell migration in metastatic tumor murine models at high resolution for one week. The method of fluorobenzene functionalization also provides a simple and universal “add‐on” strategy to render ordinary fluorescent probes suitable for long‐term live‐cell tracking, for which currently there is a deficit of suitable molecular tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号