首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) have demonstrated excellent optical properties and an encouraging potential for optoelectronic applications; however, mixed‐halide perovskites, especially CsPb(Cl/Br)3 NCs, still show lower photoluminescence quantum yields (PL QY) than the corresponding single‐halide materials. Herein, anhydrous oxalic acid is used to post‐treat CsPb(Cl/Br)3 NCs in order to initially remove surface defects and halide vacancies, and thus, to improve their PL QY from 11% to 89% for the emission of 451 nm. Furthermore, due to the continuous chelating reaction with the oxalate ion, chloride anions from the mixed‐halide CsPb(Cl/Br)3 perovskite NCs could be extracted, and green emitting CsPbBr3 NCs with PL QY of 85% at 511 nm emission are obtained. Besides being useful to improve the emission of CsPb(Cl/Br)3 NCs, the oxalic acid treatment strategy introduced here provides a further tool to adjust the distribution of halide anions in mixed‐halide perovskites without using any halide additives.  相似文献   

2.
Halide perovskites show promise for high‐efficiency solar energy conversion and light‐emitting diode devices owing to their bandgap, which falls within the visible optical range. However, due to their rigidity, GPa pressures are necessary to control the complex interplay between their electronic and crystallographic structure. Layered perovskites are likely to be controlled using much lower pressures by exploiting the optical anisotropy of the embedded organic molecules in the structure. This work introduces layered perovskite microplatelets and demonstrates the extreme sensitivity of their emission to cyclic mechanical loading in the range of tens of MPa. A drastic change in their emission is observed in situ, from near‐white to an enhanced blue color. This process is reversible, as is evident from a hysteresis loop in the photoluminescence (PL) intensity of the microplatelets. A combination of experimental analysis and computational modelling shows that such behavior cannot be attributed to changes in the crystallographic structure of the flakes. Instead, it suggests that, thanks to their structural anisotropy, microplate alignment and reorientation are responsible for the observed PL modulation. The possibility to tune the optical emission of layered perovskite crystals via low pressures makes them highly interesting as active materials in applications where stress sensing or light modulation is desired.  相似文献   

3.
Lead halide perovskites are promising materials for a range of applications owing to their unique crystal structure and optoelectronic properties. Understanding the relationship between the atomic/mesostructures and the associated properties of perovskite materials is crucial to their application performances. Herein, the detailed pressure processing of CsPbBr3 perovskite nanocube superlattices (NC‐SLs) is reported for the first time. By using in situ synchrotron‐based small/wide angle X‐ray scattering and photoluminescence (PL) probes, the NC‐SL structural transformations are correlated at both atomic and mesoscale levels with the band‐gap evolution through a pressure cycle of 0 ? 17.5 GPa. After the pressurization, the individual CsPbBr3 NCs fuse into 2D nanoplatelets (NPLs) with a uniform thickness. The pressure‐synthesized perovskite NPLs exhibit a single cubic crystal structure, a 1.6‐fold enhanced photoluminescence quantum yield, and a longer emission lifetime than the starting NCs. This study demonstrates that pressure processing can serve as a novel approach for the rapid conversion of lead halide perovskites into structures with enhanced properties.  相似文献   

4.
Indirect absorption extended below the direct transition edge and increase in carrier lifetime derived from Rashba spin–orbit coupling may advance the optoelectronic applications of metal halide perovskites. Spin-orbit coupling in halide perovskites is due to the presence of heavy elements in their structure. However, when these materials lack an inversion symmetry, for example by the application of strain, spin–orbit coupling becomes odd in the electron’s momentum giving rise to a splitting in the electronic energy bands. Here we report on the observation of a large Rashba splitting of 117 meV at room temperature, as predicted by relativistic first-principles calculations, in halide perovskite single crystals through a facile compositional engineering approach. Partial substitution of organic cations by rubidium in single crystals induces significant indirect absorption and dual peak photoluminescence as a result of a large Rashba splitting. We measured circularly polarized photoluminescence and magneto-photoluminescence in perovskite films printed by single crystals as well as magneto-electroluminescence and magneto-photocurrent in spin-LEDs based on perovskite single crystals. They indicated significant spin-momentum locking due to the large Rashba effect. A hybrid perovskite single crystal photodetector achieved record figures of merit, including detectivity of more than 1.3 × 1018 Jones which represents a three orders of magnitude improvement compared to the to date record. These findings show that facile compositional engineering of perovskite single crystals holds great promise for further advancing the optoelectronic properties of existing materials.  相似文献   

5.
Lead halide perovskites have emerged as promising semiconducting materials for different applications owing to their superior optoelectronic properties. Although the community holds different views toward the toxic lead in these high‐performance perovskites, it is certainly preferred to replace lead with nontoxic, or at least less‐toxic, elements while maintaining the superior properties. Here, the design rules for lead‐free perovskite materials with structural dimensions from 3D to 0D are presented. Recent progress in lead‐free halide perovskites is reviewed, and the relationships between the structures and fundamental properties are summarized, including optical, electric, and magnetic‐related properties. 3D perovskites, especially A2B+B3+X6‐type double perovskites, demonstrate very promising optoelectronic prospects, while low‐dimensional perovskites show rich structural diversity, resulting in abundant properties for optical, electric, magnetic, and multifunctional applications. Furthermore, based on these structure–property relationships, strategies for multifunctional perovskite design are proposed. The challenges and future directions of lead‐free perovskite applications are also highlighted, with emphasis on materials development and device fabrication. The research on lead‐free halide perovskites at Linköping University has benefited from inspirational discussions with Prof. Olle Inganäs.  相似文献   

6.
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non‐radiative charge recombination. Thus, they are attractive photoactive materials for developing high‐performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite‐based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two‐dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite‐based photodetectors, solar cells and light‐emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono‐ and few‐layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden–Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed.  相似文献   

7.
The low‐dimensional halide perovskites have received enormous attention due to their unique photovoltaic and optoelectronic performances. Periodic spacers are used to inhibit the growth of 3D perovskite and fabricate a 2D counterpart with layered structure, mostly based on organic/inorganic cations. Herein, by introducing organic anions (e.g., pentanedioic acid (PDA) and hexanedioic acid (HDA) simultaneously), leaf‐shaped (Cs3Pb2Br5)2(PDA–HDA) microplates with low‐dimensional structure are synthesized. They also exhibit significant photoluminescence (PL) centered at 540 nm with a narrow emission peak. The synthesis of single crystals of Pb(PDA) and Pb(HDA) allows to further clarify the crystal structure of (Cs3Pb2Br5)2(PDA–HDA) perovskite and its structural evolution mechanism. Moreover, the cooperative introduction of dicarboxylic acid pairs with appropriate lengths is thermodynamically favored for the low‐dimensional perovskite crystallization. The temperature‐dependent PL indicates a V‐shaped Stokes shift with elevated temperature that could be associated with the localization of excitons in the inorganic layers between organic dicarboxylic acid molecules. This work demonstrates low‐dimensional halide perovskite with anionic spacers, which also opens up a new approach to the growth of low‐dimensional organic–inorganic hybrid perovskite crystals.  相似文献   

8.
Light emission is a critical property that must be maximized and controlled to reach the performance limits in optoelectronic devices such as photovoltaic solar cells and light‐emitting diodes. Halide perovskites are an exciting family of materials for these applications owing to uniquely promising attributes that favor strong luminescence in device structures. Herein, the current understanding of the physics of light emission in state‐of‐the‐art metal‐halide perovskite devices is presented. Photon generation and management, and how these can be further exploited in device structures, are discussed. Key processes involved in photoluminescence and electroluminescence in devices as well as recent efforts to reduce nonradiative losses in neat films and interfaces are discussed. Finally, pathways toward reaching device efficiency limits and how the unique properties of perovskites provide a tremendous opportunity to significantly disrupt both the power generation and lighting industries are outlined.  相似文献   

9.
In recent years, metal halide perovskites (MHPs) have attracted attention as semiconductors that achieve desirable properties for optoelectronic devices. However, two challenges—instability and the regulated nature of Pb —remain to be addressed with commercial applications. The development of Pb-free halide double perovskite (HDP) materials has gained interest and attention as a result. This family offers potential in the field of optoelectronic devices through flexible material designs and compositional adjustments. We highlight recent progress and development in halide double perovskites and encompass the synthesis, optoelectronic properties, and engineering of the electronic structures of these materials along with their applications in optoelectronic devices. Computational and data-driven statistical methods can also be used to explore mechanisms and discover promising candidate double perovskites.  相似文献   

10.
有机-无机钙钛矿材料因为具有光谱吸收范围宽、缺陷密度低、载流子复合率低等非常优良的光电性能吸引了广泛关注, 掀起了钙钛矿材料研究热潮。近年来杂化钙钛矿型太阳能电池发展迅速, 光电转化效率目前已达到22.1%, 展现出极大的应用潜力。与多晶薄膜相比, 单晶具有极低的缺陷密度和极少的界面缺陷。多个课题组成功培养出大尺寸钙钛矿单晶, 发现钙钛矿单晶材料具有比其他薄膜多晶材料更好的光响应特性, 是设计制备光伏器件的理想材料。在各类钙钛矿材料中, CH3NH3PbI3是研究和应用最广泛的一类钙钛矿材料。本文主要针对近年来CH3NH3PbI3单晶材料的研究制备进行综述, 介绍了CH3NH3PbI3单晶材料的结构及性能, 重点总结了CH3NH3PbI3单晶材料生长制备方法和应用, 并对其发展趋势进行了展望。  相似文献   

11.
Cesium lead halide perovskites are of interest for light‐emitting diodes and lasers. So far, thin‐films of CsPbX3 have typically afforded very low photoluminescence quantum yields (PL‐QY < 20%) and amplified spontaneous emission (ASE) only at cryogenic temperatures, as defect related nonradiative recombination dominated at room temperature (RT). There is a current belief that, for efficient light emission from lead halide perovskites at RT, the charge carriers/excitons need to be confined on the nanometer scale, like in CsPbX3 nanoparticles (NPs). Here, thin films of cesium lead bromide, which show a high PL‐QY of 68% and low‐threshold ASE at RT, are presented. As‐deposited layers are recrystallized by thermal imprint, which results in continuous films (100% coverage of the substrate), composed of large crystals with micrometer lateral extension. Using these layers, the first cesium lead bromide thin‐film distributed feedback and vertical cavity surface emitting lasers with ultralow threshold at RT that do not rely on the use of NPs are demonstrated. It is foreseen that these results will have a broader impact beyond perovskite lasers and will advise a revision of the paradigm that efficient light emission from CsPbX3 perovskites can only be achieved with NPs.  相似文献   

12.
Organic–inorganic metal halide perovskites (e.g., CH3NH3PbI3?x Clx ) emerge as a promising optoelectronic material. However, the Shockley–Queisser limit for the power conversion efficiency (PCE) of perovskite‐based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide‐field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide‐based perovskite photovoltaic devices.  相似文献   

13.
Metal halide perovskites have been in the limelight in recent years due to their enormous potential for use in optoelectronic devices, owing to their unique combination of properties, such as high absorption coefficient, long charge‐carrier diffusion lengths, and high defect tolerance. Perovskite‐based solar cells and light‐emitting diodes (LEDs) have achieved remarkable breakthroughs in a comparatively short amount of time. As of writing, a certified power conversion efficiency of 22.7% and an external quantum efficiency of over 10% have been achieved for perovskite solar cells and LEDs, respectively. Interfaces and defects have a critical influence on the properties and operational stability of metal halide perovskite optoelectronic devices. Therefore, interface and defect engineering are crucial to control the behavior of the charge carriers and to grow high quality, defect‐free perovskite crystals. Herein, a comprehensive review of various strategies that attempt to modify the interfacial characteristics, control the crystal growth, and understand the defect physics in metal halide perovskites, for both solar cell and LED applications, is presented. Lastly, based on the latest advances and breakthroughs, perspectives and possible directions forward in a bid to transcend what has already been achieved in this vast field of metal halide perovskite optoelectronic devices are discussed.  相似文献   

14.
Halide perovskites provide an ideal platform for engineering highly promising semiconductor materials for a wide range of applications in optoelectronic devices, such as photovoltaics, light-emitting diodes, photodetectors, and lasers. More recently, increasing research efforts have been directed toward the nonlinear optical properties of halide perovskites because of their unique chemical and electronic properties, which are of crucial importance for advancing their applications in next-generation photonic devices. Here, the current state of the art in the field of nonlinear optics (NLO) in halide perovskite materials is reviewed. Halide perovskites are categorized into hybrid organic/inorganic and pure inorganic ones, and their second-, third-, and higher-order NLO properties are summarized. The performance of halide perovskite materials in NLO devices such as upconversion lasers and ultrafast laser modulators is analyzed. Several potential perspectives and research directions of these promising materials for nonlinear optics are presented.  相似文献   

15.
In the growing list of 2D semiconductors as potential successors to silicon in future devices, metal‐halide perovskites have recently joined the family. Unlike other conversional 2D covalent semiconductors such as graphene, transition metal dichalcogenides, black phosphorus, etc., 2D perovskites are ionic materials, affording many distinct properties of their own, including high photoluminescence quantum efficiency, balanced large exciton binding energy and oscillator strength, and long carrier diffusion length. These unique properties make 2D perovskites potential candidates for optoelectronic and photonic devices such as solar cells, light‐emitting diodes, photodetectors, nanolasers, waveguides, modulators, and so on, which represent a relatively new but exciting and rapidly expanding area of research. In this Review, the recent advances in emerging 2D metal‐halide perovskites and their applications in the fields of optoelectronics and photonics are summarized and insights into the future direction of these fields are offered.  相似文献   

16.
All‐inorganic cesium lead halide perovskite nanocrystals (NCs) have emerged as attractive optoelectronic materials due to the excellent optical and electronic properties. However, their environmental stability, especially in the presence of water, is still a significant challenge for their further commercialization. Here, ultrahigh intrinsically water‐stable all‐inorganic quasi‐2D CsPbBr3 nanosheets (NSs) via aqueous phase exfoliation method are reported. Compared to conventional perovskite NCs, these unique quasi‐2D CsPbBr3 nanosheets present an outstanding long‐term water stability with 87% photoluminescence (PL) intensity remaining after 168 h under water conditions. Moreover, the photoluminescence quantum yields (PLQY) of quasi‐2D CsPbBr3 NSs is up to 82.3%, and these quasi‐2D CsPbBr3 NSs also present good photostability of keeping 85% PL intensity after 2 h under 365 nm UV light. Evidently, such quasi‐2D perovskite NSs will open up a new way to investigate the intrinsic stability of all‐inorganic perovskites and further promote the commercial development of perovskite‐based optoelectronic and photovoltaic devices.  相似文献   

17.
Metal-free halide perovskites, as a specific category of the perovskite family, have recently emerged as novel semiconductors for organic ferroelectrics and promise the wide chemical diversity of the ABX3 perovskite structure with mechanical flexibility, light weight, and eco-friendly processing. However, after the initial discovery 17 years ago, there has been no experimental information about their charge transport properties and only one brief mention of their optoelectronic properties. Here, growth of large single crystals of metal-free halide perovskite DABCO-NH4Br3 (DABCO = N-N′-diazabicyclo[2.2.2]octonium) is reported together with characterization of their instrinsic optical and electronic properties and demonstration, of metal-free halide perovskite optoelectronics. The results reveal that the crystals have an unusually large semigap of ≈16 eV and a specific band nature with the valence band maximum and the conduction band minimum mainly dominated by the halide and DABCO2+, respectively. The unusually large semigap rationalizes extremely long lifetimes approaching the millisecond regime, leading to very high charge diffusion lengths (tens of μm). The crystals also exhibit high X-ray attenuation as well as being lightweight. All these properties translate to high-performance X-ray imaging with sensitivity up to 173 μC Gyair−1 cm−2. This makes metal-free perovskites novel candidates for the next generation of optoelectronics.  相似文献   

18.
By virtue of their narrow emission bands, near-unity quantum yield, and low fabrication cost, metal halide perovskites hold great promise in numerous aspects of optoelectronic applications, including solid-state lighting, lasing, and displays. Despite such promise, the poor temperature tolerance and suboptimal quantum yield of the existing metal halide perovskites in their solid state have severely limited their practical applications. Here, a straightforward heterogeneous interfacial method to develop superior thermotolerant and highly emissive solid-state metal halide perovskites is reported and their use as long-lasting high-temperature and high-input-power durable solid-state light-emitting diodes is illustrated. It is found that the resultant materials can well maintain their superior quantum efficiency after heating at a temperature over 150 °C for up to 22 h. A white light-emitting diode (w-LED) constructed from the metal halide perovskite solid exhibits superior temperature sustainable lifetime over 1100 h. The w-LED also displays a highly durable high-power-driving capability, and its working current can go up to 300 mA. It is believed that such highly thermotolerant metal halide perovskites will unleash the possibility of a wide variety of high-power and high-temperature solid-state lighting, lasing, and display devices that have been limited by existing methods.  相似文献   

19.
Lead halide perovskites attract tremendous research attention due to excellent optoelectronic properties. However, realizing efficient near ultraviolet (NUV) luminescence with these materials is still a big challenge. Herein, a novel rare-earth perovskite cesium thulium chloride (CsTmCl3) with high crystallinity has been synthesized via a simple hot-injection method. The obtained CsTmCl3 microcrystals have a size distribution of around 1–5 µm, and demonstrate a highly efficient NUV emission at 337 nm with a full width at half maximum (FWHM) of 68 nm. The determined band gap of CsTmCl3 microcrystals is ≈3.92 eV, which is supported by theoretical calculations. Moreover, a high photoluminescence quantum yield (PLQY) of up to 12% in NUV region has been achieved in such a lead-free perovskite. The findings suggest that CsTmCl3 perovskite microcrystal is a promising low-toxic material for applications in NUV optoelectronic devices.  相似文献   

20.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号