首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a new type of composite consisting of piezoelectric poly(γ-benzyl-α, l -glutamate) (PBLG) polymer fibers, which contain a large dipole moment, and the elastomer polydimethylsiloxane (PDMS) as the matrix material. PBLG microfibers were fabricated and polarized using the electrospinning method and cast in PDMS to form a unidirectional continuous-fiber composite. The PBLG/PDMS composite was characterized based on various aspects such as crystalline structure, mechanical properties, piezoelectricity, and electromechanical response. The piezoelectric charge constants in the transverse and longitudinal modes were measured to be 10.2 and 54 pC/N, respectively, which are the largest piezoelectric coefficients of biocompatible polymers up to date. The thin PBLG/PDMS composite film can produce up to 200 mV peak-to-peak under sinusoidal actuation and exhibit ultra-sensitivity up to 615 mV N−1. These results show the great potential of the highly flexible piezoelectric polymer fiber-based composite for use in a variety of applications such as energy harvesting devices, biomechanical self-powered structures, and force sensors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48884.  相似文献   

2.
In order to improve the toughness, wear resistance, and combustion properties of the monomer casting nylon (MC nylon) materials, the polydimethylsiloxane (PDMS) segment is bonded to the nylon molecular chain by copolymerization. PDMS/MC nylon copolymers are prepared via in situ anionic polymerization with macro-activator based on PDMS terminated with hexamethylene diisocyanate. The effects of different macro-activator content on the mechanical properties, water absorption, thermal stability, friction and wear properties, and combustion properties of the copolymers are characterized. The results show that the impact strength of the copolymer improves significantly (optimally increases by 2.6 times) and the water absorption rate decreases with the increase of PDMS content. The introduction of the silicon–oxygen structure reduces the peak heat release rate of copolymer materials (optimally decreases about 28.7%), while it promotes the decomposition of the system, resulting in a slight decrease in the thermal stability of the materials. Adding 5 wt % PDMS can decrease the wear loss of MC nylon from 6.2 mg of pure nylon to 1.6 mg. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48753.  相似文献   

3.
Polymeric gradient film consisting of the plastic nanoparticles in addition to an elastomer matrix was created by driving the charged sulfonated polystyrene (PS) nanoparticles in polydimethylsiloxane (PDMS) matrix under direct-current electric field. The gradient morphology was frozen by thermal curing. The morphology, composition, damping, and mechanical properties of cured PS/PDMS gradient film containing 10 wt % of PS nanoparticles were measured with scanning electron microscopy, energy-disperse spectroscopy, and dynamic thermal mechanic analysis and tensile test, respectively. In comparison with the isotropic PS/PDMS film, the gradient film shows a better damping property, and a higher tensile strength and elongation at breaking. The interpretation in terms of deformation and fracture mechanism of gradient structure was proposed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48401.  相似文献   

4.
In this study, polydimethylsiloxane (PDMS) and NaY zeolite doped composite membranes were prepared for the films varying from 0 to 15 NaY zeolite wt %. All the membranes were characterized by attenuated total reflectance–Fourier transform infrared (FTIR), X-ray diffraction, scanning electron microscopy, thermogravimetry/differential thermal analysis methods. The FTIR spectral results showed that there is physical interaction existing between the PDMS matrix and NaY zeolite. Additionally, film formation from the pure PDMS and PDMS/NaY composites were investigated by photon transmission technique. Activation energies corresponding to the void closure and the interdiffusion stages were calculated. The NaY zeolite added films led to the significant improvement in the mechanical properties that both the tensile strength and Young's modulus increased three times. Thermal properties of the films were also investigated and the addition of NaY zeolite into the PDMS matrix could significantly improve the thermal stability of the composite membranes. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48549.  相似文献   

5.
Polyborosiloxane (PBS) was synthesized from boric acid and hydroxyl-terminated polydimethylsiloxane (PDMS). The oscillatory shear behavior of PBS formed by PDMS with different molecular weight was studied. The relaxation time of PBS was calculated by Doi-Edwards model. Finally, the shear-stiffening mechanism of reversibly crosslinked entangled polymer was obtained. Shear stiffening occurs at lower shear frequencies, which is mainly due to crosslinking bonds and friction between molecules hindering the movement of molecules. The increase in storage modulus at high frequencies is attributed to the resistance caused by entanglement in the stretching process of molecular chains. In addition, the molecular weight is greater and the degree of shear stiffening is higher. Such a conclusion is useful to further study the application of shear stiffening. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48421.  相似文献   

6.
Waterborne polyurethane (WBPU) dispersions were prepared by pre-polymer process using siloxane polyol, namely polydimethylsiloxane (PDMS), and polyester polyol, namely poly(tetramethyleneadipate glycol) (PTAd), as a soft segment. Three different molecular weights (Mn = 550, 6000, 110,000) of PDMS and one fixed molecular weight of PTAd (Mn = 2000) was used during preparation of WBPU dispersions. This research aims to explore the potential use of PDMS in complementing WBPU by boosting flexibility, water resistance, and adhesive strength. The water swelling (%), tensile strength, and adhesive strength of WBPUs were investigated with respect to PDMS molecular weight and PDMS content (PDMS mol %). The water swelling (%) and tensile strength decreased with increasing PDMS molecular weight at a fixed PDMS content (mol %) in mixed polyol of WBPU films. By contrast, the peel adhesive strength peaked at 6.64 mol % and 4.43 mol % with molecular weight of PDMS at 550 and 6000, respectively, while it only decreased when the molecular weight of PDMS stood at 110,000. The adhesive strength was almost unaffected with optimum content (6.64 mol %) of lower PDMS molecular weight (Mn = 550) in mixed polyol-based WBPU after immersing the adhesive bonded nylon fabrics in water for 48 h among all of the samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
The Benoit universal calibration method has been tested for evaluation of GPC data of polydimethylsiloxane (PDMS) in toluene at 60°C. For the conversion of the calibration curve for polystyrene to the PDMS calibration curve, the Mark–Houwink equation for PDMS in toluene at 60°C was derived: [η] = 9.77 × 10?5 M0.725. The applicability of this universal calibration was proved by the experimental results on five PDMS model samples. For the correct evaluation of the PDMS elution curve, the use of the true calibration is inevitable, because the hydrodynamic volume of PDMS molecular weight unit is somewhat different from the polystyrene one.  相似文献   

8.
In this study, a simple photocuring method is proposed for preparing PDMS elastomers using a homogenous poly(dimethylsiloxane) (PDMS) solution in tert-butyl acrylate (tBA) as an alternative way of mechanically blending two kinds of PDMS respectively containing vinyl and hydridosilyl groups over a platinum catalyst. Poly(dimethylsiloxane-co-methylvinylsiloxane) (PDMSc) with 30 mol% of vinyl moieties is synthesized. The functionalized PDMS is estimated to be soluble in tBA from theoretical calculations of solubility parameters of PDMS and several liquid monomers. The PDMS solution is satisfactorily photocured under a conventional photoinitiator. Initial modulus and strain of the photocured films increase from 144 to 552 MPa and decrease from 3.96 to 1.84, respectively, as the tBA content rises from 5 to 30 wt%. They are extremely transparent in a visible region (T > 94%) regardless of the amount of tBA. The unreacted vinyl groups in PDMSc are inter- or intrareacted near 200 °C and γ-hydrogen transfer reactions from the tert-butyl groups in poly(tert-butyl acrylate) occur over 250 °C. One of the photocrosslinked films exhibits outstanding performance as an electroactive polymer in application. In essence, this study will initiate a new methodological research into provision of PDMS elastomers using an easily formulated photocrosslinkable PDMS solution.  相似文献   

9.
Flexible ultra-black absorber with high thermal/electrical conductivity finds huge applications in the field of stray light attenuation, solar collectors, flexible electronics, and electronic thermal management systems. In this work, we report the fabrication of ultrablack absorber consists of vertically aligned carbon nanotubes (VACNT) in Polydimethylsiloxane (PDMS) having an absorption capacity of more than 98% in UV–Vis wavelength and more than 94% in NIR wavelength range. It is observed that the PDMS-VACNT composite shows ultra-high absorption capacity due to enhanced impedance matching and multiple scattering. In addition to this, the PDMS-VACNT composite shows an emissivity of 0.94 along with a 118% increase in thermal conductivity. Moreover, with the infiltration of VACNT in PDMS, the sheet resistance decrease drastically to 0.08 KΩ/sq, which signify the possible use of ultrablack absorber in electronic skin and flexible sensors etc. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48855.  相似文献   

10.
Poly(A)‐block‐poly(B), poly(A)‐block‐poly(B)‐block‐poly(A) and B(A)2 block copolymers were prepared through coordinated anionic ring‐opening polymerization of ε‐caprolactone (CL) and lactic acid (LA) using hydroxy‐terminated polydimethylsiloxane (PDMS) as initiator. A wide range of well‐defined combinations of PDMS‐block‐PCL and PDMS‐block‐PLA diblock copolymers, PCL‐block‐PDMS‐block‐PCL and PLA‐block‐PDMS‐block‐PLA triblock copolymers and star‐PDMS(PCL)2 copolymers were thus obtained. The number‐average molar masses and the structure of the synthesized block copolymers were identified using various analytical techniques. The thermal properties of these copolymers were established using differential scanning calorimetry. Considering PDMS‐block‐PCL copolymers, the results demonstrate the complex effect of polymer architecture and PCL block length on the ability of the PDMS block to crystallize or not. In the case of diblock copolymers, crystallization of PCL blocks originated from stacking of adjacent chains inducing the extension of the PDMS block that can easily crystallize. In the case of star copolymers, the same tendency as in triblock copolymers is observed, showing a limited crystallization of PDMS when the length of the PCL block increases. In the case of PDMS‐block‐PLA copolymers, melting and crystallization transitions of the PLA block are never observed. Considering the diblock copolymers, PDMS sequences have the ability to crystallize. © 2019 Society of Chemical Industry  相似文献   

11.
Polydimethylsiloxane‐block‐polystyrene‐block‐polydimethylsiloxane (PDMS‐b‐PS‐b‐PDMS) was synthesized by the radical polymerization of styrene using a polydimethylsiloxane‐based macroazoinitiator (PDMS MAI) in supercritical CO2. PDMS MAI was synthesized by reacting hydroxy‐terminated PDMS and 4,4′‐azobis(4‐cyanopentanoyl chloride) (ACPC) having a thermodegradable azo‐linkage at room temperature. The polymerization of styrene initiated by PDMS MAI was investigated in a batch system using supercritical CO2 as the reaction medium. PDMS MAI was found to behave as a polyazoinitiator for radical block copolymerization of styrene, but not as a surfactant. The response surface methodology was used to design the experiments. The parameters used were pressure, temperature, PDMS MAI concentration and reaction time. These parameters were investigated at three levels (?1, 0 and 1). The dependent variable was taken as the polymerization yield of styrene. PDMS MAI and PDMS‐b‐PS‐b‐PDMS copolymers obtained were characterized by proton nuclear magnetic resonance and infrared spectroscopy. The number‐ and weight‐average molecular weights of block copolymers were determined by gel permeation chromatography. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The surface compositions of a series of polystyrene‐b‐polydimethylsiloxane (PS‐b‐PDMS) and polystyrene‐g‐polydimethylsiloxane (PS‐g‐PDMS) copolymers were investigated using ATR‐FTIR and XPS technique. The results showed that enrichment of PDMS soft segments occurred on the surface of the block copolymers as well as on that of graft copolymers. And the magnitude order of the enrichment was as follows: PS‐b‐PDMS > PS‐g‐PDMS, which was attributed to the facilitating of the movement of the PDMS segments in PS‐b‐PDMS copolymer. Meanwhile, the solvent type and the contact medium had influence on the accumulation of PDMS on the surfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

13.
Elastomers based on polydimethylsiloxane (PDMS) are used as insulating material in outdoor electrical power applications. It is believed that migration of small molecule PDMS species plays an important role in the recovery of hydrophobicity of oxidized or polluted PDMS elastomer surfaces. This paper reports data on diffusivity and solubility of low molar mass PDMS liquids in PDMS rubbers (8000 < M c < 16,000 g/mol) obtained by sorption measurements. It was found that the diffusivity (D) of linear PDMS liquids was approximately independent of the concentration of penetrant and that in the molar mass range 400 < M c < 18,000 g/mol it decreased with molar mass (M c) of the diffusing liquid according to D α M c−0.8. Theory and previous data for other oligomers and elastomers predict that D is proportional to M−1. Linear PDMS liquids of lower molar mass exhibited a stronger molar mass dependence. The diffusivity of a given PDMS liquid increased with increasing elastomer crosslink density. The activation energy of the diffusivity was constant at 15.5 ± 2 kJ/mol for linear PDMS liquids of M c larger than 1000 g/mol−1 with only a negligible influence of network density and filler content. The activation energy of the lowest molar mass penetrant was considerably lower, 6 to 7 kJ/mol. The solubility increased markedly with decreasing molar mass of the penetrant and with decreasing elastomer crosslink density.  相似文献   

14.
蔡泉威  巨晓洁  谢锐  汪伟  刘壮  褚良银 《化工学报》2019,70(10):3738-3747
异形功能性微颗粒由于具有独特的散射、流变和凝结等特性,被广泛应用于工业和临床医学等领域。微流控技术作为一种新兴的微流体操控技术,能够连续可控地制备尺寸均一、结构和功能多样化的微尺度材料。近年来,利用微流控技术制备异形功能微颗粒成为研究热点。主要综述了利用微流控技术制备多面体结构、棒条状、子弹形、多腔室结构、孔-壳形和螺旋形微颗粒功能材料的研究新进展,重点介绍了基于微流控通道的尺寸和形状的限制作用、基于微流控构建层流模板的可控光刻蚀、基于表面活性剂的种类或含量辅助诱导多重乳液反浸润过程和对利用微流控技术制备的单分散液滴进行二次操作制备异形微颗粒功能材料等方面的研究现状。  相似文献   

15.
《分离科学与技术》2012,47(17):2531-2539
ZIF-8-filled polydimethylsiloxane (PDMS) membranes, PDMS/ZIF-8, were prepared by a two-step polymerization process and were used to recover n-butanol from an aqueous solution by pervaporation (PV). Compared with pure PDMS membrane, PDMS/ZIF-8 membranes demonstrated an obviously higher n-butanol permselectivity. As an increase of ZIF-8 content, n-butanol/water selectivity increased initially and then decreased, while the n-butanol and water permeability decreased monotonously. PDMS/ZIF-8 membrane containing 2 wt% ZIF-8, that is, PDMS/ZIF-8-2 showed the highest selectivity. On the other hand, selectivity and permeability for n-butanol and water of PDMS/ZIF-8-2 membrane decreased with the increase of operating temperature. The selectivity and permeability for n-butanol reached 7.1 and 3.28 × 105 barrer, respectively, at 30°C when the feed concentration of n-butanol was 0.96 wt%.  相似文献   

16.
A polydimethylsiloxane‐block‐poly(methyl methacrylate) (PDMS‐b‐PMMA) diblock copolymer was synthesized by the atom transfer radical polymerization method and blended with a high‐molecular‐weight poly(vinylidene fluoride) (PVDF). In this A‐b‐B/C type of diblock copolymer/homopolymer system, semi‐crystallizable PVDF (C) and PMMA (B) block are miscible due to favorable intermolecular interactions. However, the A block (PDMS) is immiscible with PVDF and therefore generates nanostructured morphology via self‐assembly. Crystallization study reveals that both α and γ crystalline phases of PVDF are present in the blends with up to 30 wt% of PDMS‐b‐PMMA block copolymer. Adding 10 wt% of PVDF to PDMS‐b‐PMMA diblock copolymer leads to worm‐like micelle morphology of PDMS of 10 nm in diameter and tens of nanometers in length. Moreover, morphological results show that PDMS nanostructures are localized in the inter‐fibrillar region of PVDF with the addition of up to 20 wt% of the block copolymer. Increase of PVDF long period by 45% and decrease of degree of crystallization by 34% confirm the localization of PDMS in the PVDF inter‐fibrillar region. © 2018 Society of Chemical Industry  相似文献   

17.
By connecting the field‐gradient spin‐echo theory to spin–spin relaxation, we have found that the relationship between the tube‐reptation model and spin–spin relaxation can be represented by G(t) = exp[−(t/T2) n] in which n = 1 and 0.5 for regimes IV and III, respectively. In our experiments, the spin–spin relaxation of linear poly(dimethyl siloxane) (PDMS) agrees with G(t) = exp[−(t/T2)] while that of crosslinked PDMS coincides with G(t) = exp[−(t/T2)0.5]. These results reflect that in the time interval 8–800 ms the dynamics of linear PDMS are in regime IV (governed by reptation motions) and those of the crosslinked PDMS are in regime III (dominated by wriggling motions). The line‐shapes of NMR spectra of crosslinked PDMS are consistent with the Lorentzian rather than the Gaussian model. This can be accounted for by supposing that the PDMS chains between crosslinks have liquid‐like motions even though crosslinked PDMS is a solid. The liquid‐like motions of crosslinked PDMS could be regarded as wriggling motions described by the tube‐reptation model. In addition, the experimental results of diameter distribution, viscosity, NMR image and spin–lattice relaxation are presented in this work. © 2000 Society of Chemical Industry  相似文献   

18.
This article explores polydimethylsiloxane (PDMS) mechanical properties, and presents nanoindentation experiments with Berkovich and flat punch indenters. In the Berkovich tip quasi‐static nanoindentation test, there are pull‐in and pull‐off events observed during the initial tip contact, and when withdrawing from the surface, respectively. The pull‐in interaction needs to be accounted for to properly determine the initial contact point, and thus the accurate contact area. Once accounted for the pull‐in event, the Berkovich and flat punch tips quasi‐static nanoindentation tests give comparable results of about 1.5 MPa for the PDMS elastic modulus (5 : 1 elastomer base to the curing agent ratio). However, PDMS unloading stiffness is higher than the loading stiffness, and dynamic PDMS testing yields higher elastic modulus of about 3.6 MPa. While these results are comparable with the large strain macroscopic compression test results, the difference underscores the complexity of elastomer mechanical characterization and illustrates the discrepancies typical of the reported values. This article describes nanoindentation methods and critical aspects of interpreting results to assess PDMS mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41384.  相似文献   

19.
Highly stretchable transparent conductors where Ag nanowire networks (AgNWs) are reliably embedded into a polydimethylsiloxane (PDMS) substrate are presented. In spite of the weak physical and chemical interaction between Ag nanowires and PDMS, a significantly high transfer efficiency and uniform embedding of AgNW percolation mesh electrodes into PDMS was achieved by simply coating aerogels onto the AgNWs and using water‐assisted transfer. By the failure‐free transfer and reliable bonding with the substrate, the conductive PDMS with embedded AgNWs that exhibits a sheet resistance (Rs) of 15 Ω/sq and 80% optical transmittance (T) are reported here. The PDMS films accommodate tensile strains up to 70% and a cyclic strain of 25% for more than 100 cycles, with subsequent Rs values as low as 90 and 27 Ω/sq, respectively. The T of this conductive PDMS is more than 25% higher than that of networks of CNTs, Cu nanowires, and hybrid composites of CNTs and graphene embedded in elastomer films such as PDMS, polyurethane, and Ecoflex. The simple and reproducible fabrication allows the extensive study and optimization of the stretchability of the meanders in terms of humidity, thickness, and substrate. The results provide new insights for designing stretchable electronics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43830.  相似文献   

20.
Several types of poly(methyl methacrylate)/poly(dimethyl siloxane) graft copolymers (PMMA‐g‐PDMS) were synthesized using macromonomer technology. Three types of PMMA‐g‐PDMS with different PDMS chain length were obtained. The effect of siloxane chain length on surface segregation of PMMA‐g‐PDMS/poly(2‐ethylhexyl acrylate‐co‐acrylic acid‐co‐vinyl acetate)[P(2EHA‐AA‐VAc)] blends was investigated. The blends of PMMA‐g‐PDMS with P(2EHA‐AA‐VAc) showed surface segregations of PDMS components. The surface enrichments of PDMS in the blends depended on the PDMS chain length, significantly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1736–1740, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号