首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
Electrospinning technique was employed to prepare neat PVDF, nanoclay-PVDF and carbon nanotube (MWCNT)-PVDF nanocomposites, and nanoclay-carbon nanotube-PVDF hybrid nanocomposites. A mixture of dimethyl formamide/acetone (60/40) was used to fluidize the polymer and nanofillers. Electrospinning process was conducted under optimized conditions. Maximum modification was achieved at 0.15 wt% nanofiller. Rheological measurements on the prepared solutions revealed decreased material functions in the presence of nanoclay, whereas the rheological properties of MWCNT-PVDF solution did not show any significant reduction compared with those of neat PVDF solution. The behaviors of the hybrid nanocomposite solutions, though dependent on their composition and their material functions, increased with MWCNT concentration. These differences, together with variations in electrical properties of nanoclay and MWCNT, led to changes in morphology of the fiber during electrospinning process. Under electrospinning conditions designed for neat PVDF solution, mats with beads and with the highest fiber diameter were produced. Meanwhile, incorporation of both nanoclay and MWCNT into the solutions resulted in bead-free fibers with thinner diameter. Fourier transformed infrared spectrophotometry (FTIR) and X-ray diffractometry (XRD) were used to measure the β-phase crystalline content in electrospun mats. Complete agreement was found between the FTIR and XRD results. The lowest and highest β-phase contents were obtained for neat PVDF mat and hybrid nanocomposite mat containing 0.1 wt% clay, respectively. The mixing procedure of nanofillers and the PVDF solution was also found to be important. In case of hybrid nanocomposites, more β-crystals were formed when the nanoclay was first mixed in the absence of MWCNT.  相似文献   

2.
Abstract

The effect of carbon black on nanoclay filled polychloroprene (CR) composites has been investigated. The nanoclay loading is fixed at 5 part per hundred rubbers (phr), and carbon black loading varied from 5 to 20 phr in rubber compounds. The rubber nanocomposites are prepared in laboratory by mixing in two-roll mill. The addition of nanoclay enhances mechanical properties especially tear strength and decreases water absorption without change in electrical properties compared to gum rubber vulcanisates. Wide angle X-ray diffraction and transmission electron microscopy are used to study the microstructure of CR nanocomposites. The addition of 5 parts of nanoclay to 15 phr carbon black filled samples shows synergistic effect between the fillers and suggests that the reinforcement is due to a more developed filler network formation in hybrid filler system than that in single phase filler. Significant improvement in mechanical, electrical and low water absorption properties has been obtained with these nanoclay and carbon black filled rubber nanocomposites. The paper concludes that nanocomposites containing a mixture of organoclay and carbon black in right proportion can be a substitute for rubber components used in underwater cable and device encapsulation applications.  相似文献   

3.
In this study, we focused on the synergistic effect between carbon black (CB) and multiwall carbon nanotube (MWCNT) hybrid fillers. In particular, the surface modification of pristine MWCNT (P-MWCNT) via an acid (oxidation) treatment was used to improve their dispersion, as well as the mechanical and thermal properties of their corresponding natural rubber (NR)-based nanocomposites. Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were carried out to determine the presence of functional groups on the oxidized MWCNT (O-MWCNT). After vulcanization, dynamic mechanical analysis (DMA), tensile properties, hardness, thermal conductivity, swelling behaviour in toluene and SEM characterizations were performed on both NR/CB/P-MWCNT- and NR/CB/O-MWCNT-based nanocomposites. The results showed the positive effect of MWCNT surface oxidation on the fillers' dispersion and nanocomposites' properties.  相似文献   

4.
Polymer based nanocomposites were prepared using brominated poly(isobutylene‐co‐paramethylstyrene) (BIMS) rubber and octadecyl amine modified montmorillonite nanoclay. The effect of nature and loading of carbon black on these nanocomposites and the control BIMS was investigated thoroughly using X‐ray diffraction technique (XRD), Fourier transform infrared spectroscopy (FTIR), and mechanical properties. The addition of 4 parts of the modified nanoclay to 20 phr N550 carbon black filled samples increased the tensile strength by 53%. Out of the three different grades of carbon black (N330, N550, and N660), N550 showed the best effect of nanoclay. Optimum results were obtained with the 20 phr filler loading. For comparison, china clay and silica at the same loading were used. Fifty‐six and 46% improvements in tensile strength were achieved with 4 parts of nanoclay added to the silica and the china clay filled samples, respectively. N330 carbon black (20 parts) filled styrene butadiene rubber (SBR) based nanocomposite registered 20% higher tensile strength with 4 parts of the modified nanoclay. In all the above carbon black filled nanocomposites, the modulus was improved in the range of 30 to 125%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 443–451, 2005  相似文献   

5.
The study investigates the influence of bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) grafted nanosilica (NS) reinforcement on the mechanical, viscoelastic, thermal, and transport characteristics as well as behavior after exposure to different cumulative γ-radiation doses of EPDM-CIIR blends for application in nuclear and hydrocarbon environments. The tensile strength and modulus of the nanocomposites were enhanced upto 64% and 118%, respectively whereas solvent diffusion coefficient reduced by 22%. The degradation onset temperature improved from 485°C for unfilled blends to 503°C for the nanocomposites. γ-radiation aging resistance of EPDM-CIIR blends improved with incorporation of nanosilica, with blends containing 7.5phrNS showing optimum properties and radiation aging resistance. The property improvements are attributed to the dispersion of NS and chemically interfaced covalent linkages between SiO2-EPDM/CIIR chains that provides large interfacial area for effective stress transfer and creates barrier to free radical and solvent permeation. The applicability of Korsmeyer-Peppas, Peppas-Sahlin, and Higuchi models to predict of sorption behavior are investigated. Coats-Redfern and Horowitz-Metzger models were employed to evaluate the activation energy for thermal degradation. Slight decline in properties at higher nanofiller contents was due to the formation of agglomerates. TEM, FTIR, and rheological curves were utilized to corroborate these observations. FTIR and ESR analysis provided insight on the chemical changes in the nanocomposites after irradiation.  相似文献   

6.
Vinyl ester/clay nanocomposites with 1, 3, and 5% nanoclay contents were prepared. X‐ray diffractography patterns and Scanning Electron micrographs showed that nanocomposites with the exfoliated structure were formed. Thermogravimetric analysis, water absorption test, and Tafel polarization method, respectively, revealed the improvements in thermal resistance, water barrier properties, and corrosion resistance properties of the samples with an increase in the amount of the incorporated nanoclay. Tensile tests showed that nanoclay also enhanced the mechanical properties of the polymer, so that the tensile strength of the samples with 5% nanoclay was more than 3 times higher than tensile strength of pure vinyl ester samples. Overall, the best properties were observed for the samples containing 5% nanoclay. Pure vinyl ester and nanocomposite with 5% nanoclay content were exposed to the electron beam radiation and their mechanical properties improved up to 500 kGy irradiation dose. Finally, pure vinyl ester and vinyl ester/nanoclay (5%) matrixes were reinforced with carbon fiber and the effect of electron beam irradiation on their mechanical properties was examined. The tensile strength and the modulus of the samples initially increased after exposure to the radiation doses up to 500 kGy and then a decrease was observed as the irradiation dose rose to 1000 kGy. Moreover, nanoclay moderated the effect of the irradiation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42393.  相似文献   

7.
The effect of interlayer distance of nanoclay on mechanical properties, cure characteristics, and swelling resistance of natural rubber (NR) in varying clay proportion were studied. X-ray diffraction results of nanocomposite with 10 phr of nanoclay showed the formation of an intercalated structure. The rate of vulcanization and maximum torque value of the nanocomposite are higher than the gum compound. Nanocomposites with clay having higher interlayer distance shows superior mechanical properties. Mechanical properties gradually increase with increase in clay loading up to 10 phr. A 50% increase in tensile strength and about 150% increase in modulus at 300% elongation were observed for the nanocomposite with 10 phr clay loading. Better barrier properties offered by the nanocomposites due to the presence of tortous path was confirmed by the Nielson's model.  相似文献   

8.
Polymer‐based composites find use in many nuclear and space application for their ease of fabrication, tailor made properties and light weight. Certain polymers like PTFE, unfilled polyesters and polyamides are prone to degradation in presence of high energy radiation while polymers like epoxies, polyimides, and poly‐ether ether ketone have good stability to ionizing radiation. Incorporation of fillers like carbon nanotubes (CNTs) is likely to improve the radiation resistance of the polymers. In this work, polysulfone (PSU)‐based nanocomposites were fabricated using multiwalled carbon nanotube (MWCNT) by solution mixing process. The morphology of the PSU/ MWCNT nanocomposites films were studied using Field Emission Scanning Electron Microscopy (FESEM). The prepared films were subjected to γ radiation in an argon environment (to avoid the effect of air/oxygen). Different techniques were used to understand the radiation‐induced changes. Gel Permeation Chromatography (GPC) traces of neat PSU before and after exposure to radiation shows a decrease in molecular weight. Infrared spectroscopy shows changes in chemical structure. Differential Scanning Calorimetry (DSC) thermograms reveal dose‐related changes. For neat PSU, a decrease in Tg was observed with increase in dose. For PSU/ MWCNT nanocomposites, the increase in MWCNT content and dose (up to 1.5 MGy) increased the Tg. Thermo Gravimetric Analysis (TGA) showed a marginal decrease in thermal stability for pristine PSU as well as PSU/MWCNT nanocomposites with irradiation. Tensile strength increased with increasing MWCNT content but decreased with dose. Elongation at break decreased with MWCNT content as well as radiation dose. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42017.  相似文献   

9.
Carbon nanotube based polymer nanocomposites found versatile applications and hence studying its reinforcing effect on NR/NBR blend system is a promising step in developing flexible elastomer gadgets. In this study, attempts have been made to prepare multi‐walled carbon nanotube (MWCNT)‐filled nanocomposites of NR/NBR blends. Raman spectra and transmission electron microscopic analysis indicate that there has been a finer and uniform dispersion of carbon nanotubes within the polymer matrix. Mechanical properties like tensile strength, tear resistance, abrasion loss and compression set of pure and blend samples showed an improvement with the increase in the dosage of MWCNT from 0.5 to 4 phr. 70/30 NR/NBR blend with 4 phr of MWCNT showed an improvement of 83% in tensile strength and 72% in tear strength compared to pure NBR. This is attributed to the uniform dispersion, high surface area, nano level interaction, and compatibility of MWCNT with the polymeric molecular chains. MWCNT is acting as a compatibilizing agent as is manifest from the increased negative values of free energy. Electrical conduction and thermal stability of the mixes were increased with the concentration of MWCNT due to the increase in the interfacial interaction resulting from the pi‐pi interaction with the nanotubes. POLYM. ENG. SCI., 58:961–972, 2018. © 2017 Society of Plastics Engineers  相似文献   

10.
《Polymer Composites》2017,38(3):583-587
Hybrid natural fiber polymer nanocomposites were prepared using various natural fibers (kenaf, coir, and wood), polypropylene, and montmorillonite nanoclay through the hot compression method. The effects of fiber hybridization and nanoclay content on the physico‐mechanical and biodegradable properties of the synthesized composites were investigated. Fourier‐transform infrared and scanning electron microscopic analyses indicated that the structure and surface morphology of composites were transformed after fiber hybridization and the subsequent nanoclay incorporation. X‐ray diffraction pattern revealed that the percent crystallinity of hybrid nanocomposites significantly increased. Furthermore, the tensile strength and tensile modulus also significantly improved for the hybrid nanocomposites due to the addition of montmorillonite nanoclay. The biodegradability and water absorption tests were conducted. The results show that biodegradability of the nanocomposites decreased and water absorption increased due to the addition of montmorillonite nanoclay. POLYM. COMPOS., 38:583–587, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Styrene butadiene rubber-organoclay nanocomposites were prepared with Cloisite 15A via melt intercalation. X-ray diffraction and transmission electron microscopy indicated that the nanostructures are partially exfoliated and intercalated. The nanocomposites exhibited great improvements in tensile strength and tensile modulus. The incorporation of organoclay gave rise to considerable reduction of tan delta and increase in storage modulus in the rubbery region. It is shown that after 6 phr (parts per hundred rubber) clay loading there is not much increase in the properties. The effect of carbon black (N330) on mechanical properties, dynamic mechanical properties, heat build up, abrasion resistance in the nanocomposites having the optimized clay level (6 phr) was investigated. Optimum results were obtained with the addition of 25 phr carbon black. For comparison with the 6phr nanoclay and 25phr N330 (high abrasion furnace carbon black) filled SBR composites, 40 phr N330 filled SBR composites was used. The 6phr organoclay and 25phr N330 filled SBR nanocomposite showed better properties than 40phr carbon filled SBR compound. These results indicate that 6phr organoclay can be replaced by 15 phr carbon black from the conventional SBR-carbon black based tire tread compounds. The Dynamic mechanical analyzer (DMA) results revealed that the new tire tread compound gives better rolling resistance and comparable wet grip resistance and lower heat build up than that of conventional tread compound.  相似文献   

12.
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738.  相似文献   

13.
The mechanisms of microhardness increase in thermoplastic polypropylene/multi‐walled carbon nanotubes (MWCNT) nanocomposites during electron irradiation (Ee = 1.8 MeV) with different absorption doses are investigated. The crystal structure of the nanocomposites, Raman scattering, and microhardness in a MWCNT concentration range between 0.1 and 5.0 wt% is studied in detail. During irradiation, changes in the degree of crystallinity of the polymer matrix, lattice parameters of the topologically ordered phase, Raman scattering, and microhardness show a complex conjugation process between the composite components. Their interaction is accomplished as the result of the formation of new bonds, which appeared with the radiation damages. Furthermore, the crosslinking of the internal MWCNT layers also contributes to an increase in the strength properties of the polymer nanocomposites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
Ethylene‐vinyl acetate copolymer (EVA) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and organoclays, and the effects of simultaneous use of organoclays and MWCNTs on the surface resistivity and tensile properties of EVA nanocomposites were investigated. The surface resistivity of EVA/MWCNT nanocomposite with 1 phr of MWCNT is out of our measurement range (above 1012 Ω/square). With increasing content of organoclay from 0 to 3 phr, the surface resistivity of the EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT remains out of our measurement range. However, the surface resistivity of the nanocomposite decreases to 106 Ω/square with addition of 5 phr organoclay. The tensile properties of EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT and 5 phr organocaly are similar to those of EVA/MWCNT nanocomposites with 5 phr MWCNT except tensile modulus. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Polyurethane (PU) nanocomposites with 0, 1, 3, 5, and 7?wt-% nanoclay contents were prepared. X-ray diffraction patterns, transmission electron microscopy images, tensile test, and thermogravimetric analysis were utilised to reveal the morphological, mechanical, and thermal-resistant properties of the prepared nanocomposites. The exfoliated structure was obtained for nanoclay contents up to 3?wt-%. Incorporation of nanoclay to the PU matrix prompted the thermal stability of the polymer. A nanocomposite filled with 3?wt-% nanoclay showed the best tensile strength in the prepared nanocomposites. Subsequently, the nanocomposite with the 3?wt-% nanoclay was reinforced with carbon and glass fibres. Reinforcement of the PU/nanoclay matrix with carbon and glass fibres significantly ameliorated the tensile properties. Finally, the effects of the electron beam irradiation on the nanocomposites and fibre-reinforced composites were studied. Irradiation with the doses up to 500?kGy enhanced the mechanical and thermal properties. However, further irradiation deteriorated the mechanical and thermal-resistant properties.  相似文献   

16.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/multi‐walled carbon nanotube (MWCNT)/organoclay foams with improved mechanical properties without increase of their density, compared with EVA/MWCNT foams. MWCNT content was fixed at 5 phr in this study. To achieve the objective, EVA was melt‐mixed with MWCNTs and organoclays in a bench kneader. And the obtained EVA/MWCNT/organoclay mixtures were mixed with chemical blowing agent and cross‐linking agent in a two roll‐mill. After being mixed in a two roll‐mill, the mixtures were put in a mold and the foams were obtained by compression‐molding. The effect of organoclay content on the mechanical properties and surface resistivity of EVA/MWCNT (5 phr)/organoclay foams was investigated. The addition of 1 phr organoclays to the EVA/MWCNT (5 phr) foams resulted in the improvement of tensile strength, 100% tensile modulus, tear strength, and compression set without increase of the density. However, further increase in content of organoclay (3 phr) leaded to a deterioration of mechanical properties. Therefore, determining the optimal content of organoclay was very important in order to achieve the main objective of this study. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
利用静电纺丝并借助高速旋转的滚筒和热牵引作用制备不同取向度的聚丙烯腈/碳纳米管(PAN/MWCNTs)纳米纤维膜,通过高速滚筒和热牵引提高PAN的结晶度从而提高材料的拉伸强度和弹性模量,但会降低断裂伸长率;MWCNTs含量为0.5 %(质量分数,下同)时PAN/MWCNTs力学性能最佳。利用浸渍法将各种取向度的PAN/MWCNTs纳米纤维膜与热塑性弹性体(POE)制备成一系列POE/PAN/MWCNTs复合材料(POE/PM)。结果表明,高取向度POE/h?P2M复合材料的拉伸强度比不取向POE/u?PME复合材料高71 %,拉伸强度显著提高,断裂伸长率则减小,PAN/MWCNTs纳米纤维膜含量为6.7 %时,复合材料的力学性能最佳。  相似文献   

18.
Foaming behavior of poly(methyl methacrylate) (PMMA)/multi‐walled carbon nanotubes (MWCNTs) nanocomposites and thermally‐insulating, electrical, and mechanical properties of the nanocomposite foams are investigated. PMMA/MWCNT nanocomposites containing various amounts of MWCNTs are first prepared by combining solution and melt blending methods, and then foamed using CO2. The foaming temperature and MWCNT content are varied for regulating the structure of PMMA/MWCNT nanocomposite foams. The electrical conductivity measurement results show that MWCNTs have little effect on the electrical conductivity of foams with large expansion ratio. Thermal conductivities of both solid and foamed PMMA/MWCNT nanocomposites are measured to evaluate their thermally insulating properties. The gas conduction, solid conduction, and thermal radiation of the foams are calculated for clarifying the effects of cellular structure and MWCNT content on thermal insulation properties. The result demonstrates that MWCNTs endowed foams with enhanced thermal insulation performance by blocking thermal radiation. Moreover, the compressive testing shows that MWCNTs improve the compressive strength and rigidity of foams. This research is essential for optimizing environmentally friendly thermal insulation nanocomposite foams with enhanced thermal‐insulation and compressive mechanical properties.  相似文献   

19.
The present work seeks to investigate microstructure, mechanical properties, and flame retardancy of polyurethane/nanoclay flexible foam composites. In this regard, we prepared various nanocomposites with and without nanoclay and observed the resulting morphologies to correlate them with the other corresponding characteristics. The results provided support for the fact that tensile strength and compression set will increase with nanoclay content, while elongation at break and tear strength decrease to some extent. Flame‐retardancy test results showed that the introduction of nanoclay into the polyurethane flexible foam causes an almost optimal trend in the flame retardancy over clay content. The microcellular‐properties correlations were established on account of changes in microcell architecture. J. VINYL ADDIT. TECHNOL., 22:415–422, 2016. © 2015 Society of Plastics Engineers  相似文献   

20.
在超声改善MWCNT在不饱和聚酯树脂的分散性的基础上,通过非共价官能团化的方法引入处理过的天然填料柠檬酸化纤维素(CNFCA)来增强不饱和聚酯树脂,并采用偏光显微镜、旋转流变仪、透射电子显微镜、扫描电子显微镜、万能试验机等对不饱和聚酯树脂纳米复合材料的结构和性能进行了研究。结果表明,MWCNT的加入可以使不饱和聚酯复合材料的拉伸性能提高,通过溶剂辅助超声的方法可以使MWCNT的分散性提高,从而进一步提高不饱和聚酯纳米复合材料的力学性能;CNFCA的加入使得不饱和聚酯树脂纳米复合材料的力学性能得到较大程度的提高;超声分散和研磨的方法可以有效地将CNFCA和MWCNT结合在一起,从而提高其在不饱和聚酯中的分散能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号