首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王文  许伟 《精细化工》2020,37(10):2027-2034
利用三聚氰氯(CC)、八氟戊醇(OFP)和乙醇胺(MEA)间的反应先合成了三嗪基含氟扩链剂CC-F,在此基础上制备出系列三嗪基含氟扩链剂改性水性聚氨酯CC-FPUF。利用FTIR和1HNMR对其结构进行表征,并用DLS、XRD、XPS、SEM、WCA和电子万能试验机探究了CC-FPUF制备中所用CC-F的含量(以CC-F、IPDI、CMA-1044、DMPA、S104、TMP和TEA的总质量为基准,下同)对CC-FPUF的乳液粒径、聚合物形态、胶膜形貌、表面元素组成、疏水性能和力学性能的影响。结果表明,随着CC-F含量的增加,CC-FPUF的乳液粒径、胶膜疏水性能和胶膜拉伸强度均有所增加。当CC-F的含量达到8%(CC-FPUF-8)时,胶膜的水接触角最高达到125.8°,相比不含氟的水性聚氨酯(PU)和CC-FPUF-0(CC-F的含量为0)分别增加了60.9°和34.1°;此时胶膜的拉伸强度最大,相比CC-FPUF-0增加了24.47 MPa。胶膜CC-FPUF-8表现出优异的疏水性能和良好的力学性能。  相似文献   

2.
The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.  相似文献   

3.
The silver (Ag) thin films were deposited on silicon substrates by DC magnetron sputtering method under different substrate temperatures of 100–500?°C. Then the as-deposited films were subjected to annealing treatment. The XRD results revealed that the Ag thin films have a good nanocrystalline structure and a considerable increase in the crystallinity of Ag (111) peak was observed at substrate temperature of 200?°C. The average crystalline size of Ag films varied between 18 and 44 nm which confirms the presence of nanocrystal’s in the films. The AFM and SEM images demonstrated that the grain size and surface roughness of the films are sensitive to substrate temperature during deposition of the films and annealing treatment. The SEM results is in good agreement with the results of XRD and AFM analysis.  相似文献   

4.
s‐Triazine‐based hyperbranched polyurethanes (HBPUs) with different hard segments were synthesized by A2 + B3 approach. Various kinds of multiwalled carbon nanotube (MWNT) nanocomposites with HBPU were prepared to investigate an impact of hyperbranched polymer on dispersion of MWNTs in the polymer matrix and the resulting properties of nanocomposites. Synthesized HBPUs were characterized using FTIR and NMR measurements. The highly branched structures were found very effective in enhancing the pristine MWNT dispersion in the polymer matrix. As a result, the MWNT‐reinforced HBPU nanocomposites showed a steep increase in the yield stress and modulus and enhanced shape memory effect with an increase of hard segment and MWNT loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Renewable resource tailored tough, elastomeric, biodegradable, smart aliphatic hyperbranched polyurethanes were synthesized using castor oil modified polyol containing fatty amide triol, glycerol, diethanolamine and monoglyceride of sunflower oil via an Ax + By (x , y ≥ 2) approach. To the best of our knowledge, this is the first report of the synthesis of solely aliphatic hyperbranched polyurethanes by employing renewable resources. The synthesized polyurethanes were characterized by Fourier transform infrared, NMR and XRD techniques. The hyperbranched polyurethanes exhibited good mechanical properties, especially elongation at break (668%), toughness (32.16 MJ m?3) and impact resistance (19.02 kJ m?1); also high thermal stability (above 300 °C) and good chemical resistance. Also, the hyperbranched polyurethanes were found to show adequate biodegradability and significant UV light resistance. Moreover, they demonstrated excellent multi‐stimuli‐driven shape recovery ability (up to 97%) under direct sunlight (105 lux), thermal energy (50 °C) and microwave irradiation (450 W). The performance of the hyperbranched polyurethanes was compared with renewable resource based and synthetic linear polyurethane to judge the superiority of the hyperbranched architecture. Therefore, these new aliphatic macromolecules hold significant promise as smart materials for advanced applications. © 2017 Society of Chemical Industry  相似文献   

6.
The isocyanate‐terminated linear polyurethane prepolymer (LPPU) was successfully synthesized via step‐by‐step polymerization, with isophorone disocyanate (IPDI) and polytetramethylene ether glycol (PTMG, Mn = 2000 g/mol) used as raw materials, dibutyltin dilaurate (DBTDL) as the catalyst, 1,4‐butanediol (BDO) as the chain extender and anhydrous ethanol (EtOH) as the blocking agent. Then the hyperbranched poly (urethane‐urea) (HBPU) containing amino groups was synthesized by grafting LPPU on amino‐terminated hyperbranched polymers (NH2‐HBP). The molecular structure of LPPU and HBPU were characterized by means of FT‐IR and 1H‐NMR. It was founded that LPPU and HBPU were successfully synthesized as anticipated. The thermal stability and crystalline morphology of LPPU and HBPU were characterized and analyzed by TG and XRD. Additionally, it was also found that, after addition of 10% HBPU, the water absorption rate, water vapor transmission rate, and water vapor permeability increased markedly by 162.02%, 400.00%, 260.00%, respectively. The tensile strength of membrane decreased by 24.57% and the elongation at break increased by 26.92%. Compared with the leather finished by commercial PU finishing agent, the leather finished by HBPU presented better properties. The water vapor permeability of the leather finished by increased by 13.0%, and the dry‐ and wet‐rub resistances and the physical and mechanical performances were excellent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44139.  相似文献   

7.
The bio‐based hyperbranched polyurethanes (HBPUs) have generated immense interest as advanced shape memory materials. In the present investigation, HBPUs were synthesized from poly(ε‐caprolactone)diol as a macroglycol, butanediol as a chain extender, monoglyceride of Mesua ferrea L. seed oil as a bio‐based chain extender, triethanolamine as a branch‐generating moiety (at different percentages), and toluene diisocyanate by a prepolymerization technique using A2 + B3 approach. The structure of the synthesized HBPU was characterized by different techniques. Nuclear magnetic resonance (proton) study indicated the formation of highly branched structure with degree of branching 0.9. The increment of thermal stability from 225 to 260°C and melting point from 50 to 53.5°C with the increase of triethanolamine content was observed. Tensile strength 4–8 MPa, elongation at break 614–814%, impact resistance 0.8–0.95 m, and scratch hardness 2–6 kg increased with the increase of multifunctional moiety content from 0 to 5 wt%. The shape recovery ratio increased with the increase of multifunctional moiety content from 0.21 to 0.95. Thus, the studied HBPUs have the potential to be used as advanced thermoresponsive shape memory materials. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
《Ceramics International》2020,46(6):7499-7509
Nanostructured thin films of CuO were deposited on silica glass substrates using reactive DC magnetron sputtering technique. Microstructural, morphological, optical, catalytic and photocatalytic properties of the prepared CuO thin films were examined using FESEM, AFM, Rutherford backscattering spectrometry, XRD, XPS, UV–Vis absorption and PL spectroscopy. FESEM showed nanostructures in the thin films, which were confirmed to be of monoclinic CuO by XRD analysis. Substrate temperature variation (40 °C, 100 °C and 300 °C) was found to significantly alter the optical, morphological, photocatalytic and structural properties of the CuO nanostructured thin film coatings. FESEM and AFM analyses showed decrease in size of nanostructures and surface roughness increase with increase in substrate temperature. Increase in UV–Vis absorbance and PL intensity of CuO thin films with decrease in crystallite size were noticed as the substrate temperature was increased. The prepared nanostructured CuO thin films exhibited highly enhanced photocatalytic activities and degraded dyes (MB and MO) in water in just 40 min under solar exposure and catalytic transformation of 4-nitrophenol (4-NP) took place in just 15 min. The developed CuO nanostructured thin film coatings are very promising for large scale, practical and advanced catalytic reduction of toxic 4-NP and photocatalytic applications in solar driven water purification.  相似文献   

9.
Linear polyurethanes were obtained the reaction of 1,6-hexamethylene diisocyanate with poly(ɛ-caprolactone)diol and butane-1,4-diol. Synthesis was carried out in the presence of 1, 3 and 5 wt.% of polydimethylsiloxane-poly(methyl methacrylate) core–shell nanopowder. Solutions of resulting polyurethanes were cast on PTFE plates and dried at 140 °C to form films. The presence of structures originating from modifier was confirmed by IR and XPS spectroscopy. DSC analysis revealed the presence of crystalline phase in all samples. Contact angles were determined using standard fluids and surface free energy parameters were calculated. The results of these investigations proved that modification with silicone-acrylic nanopowder resulted in significant increase in hydrophobicity of polyurethane surfaces Changes in surface characteristics were also reflected in surface images obtained in AFM studies. It is suggested that the polyurethane composites obtained in this study can be tested as coatings for biomedical applications.  相似文献   

10.
The isocyanate‐terminated polyurethane pre‐polymer (PPU) was synthesized via the step‐growth polymerization approach by using polycarbonate diol (PCDL, Mn = 2000) and isophorone disocyanate (IPDI) as monomers, dibutyltin dilaurate (DBTDL) as the catalyst. Subsequently, the hyperbranched polyurethane (HBPU) was synthesized by graft copolymerization using PPU, hyperbranched poly(amide–ester) polyol (HPAE) and 1,4‐butanediol (BDO). The molecular structure of HBPU was characterized by means of FTIR, 1H‐NMR, and 13C‐NMR. It was observed that HBPU was synthesized as anticipated. The thermal and mechanical properties, the microstructure, and morphologies of the filmed HBPU and LPU (linear polyurethane) were tested, respectively. The filmed HBPU, revealed better thermal stability, and higher Tg accompanied with lower viscosity than those of filmed LPU. Additionally, the mechanical experiment showed that the filmed HBPU exhibited enhanced mechanical properties because it contained certain amounts of HPAE. Compared with its linear analog (LPU) specimen, the tensile strength of the filmed HBPU containing 10 wt % HPAE increased by 1.9 times (up to 28.15 MPa), and its elongation at break increased by 1.5 times (up to 543.8%), resulting from the dual effects of the hydrogen bonding and the crosslinking density in the HBPU system. The morphologies of filmed HBPU were characterized by means of WAXD and SEM, which indicated that increasing the content of HPAE lowers the crystallinity of HBPU. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2671–2679, 2013  相似文献   

11.
Composite and compositionally graded (CGed) TiN–AlN films were deposited on Si wafers at 600 °C from Ti- and Al-alkoxide solutions by N2 plasma-enhanced chemical vapor deposition (CVD). The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Vickers micro-hardness. In the composite TiN–AlN films, the Ti and Al contents varied linearly and complementarily with solution composition, the N content ranging from 35 to 40 at.%. In the CGed films, the Al component decreased complementarily with increasing Ti toward the substrate. Cross-sectional SEM observation showed both films to be about 1 μm thick with a columnar structure. Oxidation of the composite and CGed films was performed at 500, 700, and 900 °C in air for 1 h. The improvement of oxidation resistance in both composite and CGed films is discussed on the basis of the XRD and SEM observations, and the XPS analysis of the oxidized films.  相似文献   

12.
Multiwalled carbon nanotubes (MWNT) were functionalized with segmented polyurethanes (PU) by the “grafting to” approach. Raman and X‐ray photoelectron spectroscopy (XPS) spectra show that the sidewalls of MWNTs have been functionalized with acid treatment, and the amount of COOH increases with increasing acid treatment time. FTIR and X‐ray diffraction (XRD) spectra confirm that PU is covalently attached to the sidewalls of MWNTs by esterification reaction. Similar to the parent PU, the functionalized carbon nanotube samples are soluble in highly polar solvents, such as dimethyl sulfoxide (DMSO) and N,N‐dimethylformamide (DMF). The functionalized acid amount and the grafted PU amount were determined by thermogravimetric analyses (TGA). Comparative studies, based on SEM images between the PU‐functionalized and chemically defunctionalized MWNT samples, also reveal the covalent coating character. Dynamic mechanical analysis (DMA) of nanocomposite films prepared from PU and PU‐functionalized MWNTs show enhanced mechanical properties and increased soft segment Tg. Tensile properties indicate that PU‐functionalized MWNTs are effective reinforcing fillers for the polyurethane matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Hyperbranched polyurethane (HBPU)‐urea/cenosphere hybrid coatings were synthesized by incorporating various concentrations of cenosphere into HB polyester matrix by ultrasonication technique, and this polyester was further used for the preparation of isocyanate terminated HBPU prepolymers by reacting with excess isophorone diisocyanate (IPDI) in a NCO/OH ratio of 1.6 : 1. The desired hybrid coating is obtained by moisture curing the excess NCO present in the prepolymer through film casting. The structure of the hyperbranched polyester (HBPE) was conformed by 1H, 13C NMR and FTIR spectroscopy and the degree of branching (DB) was calculated using Frechet and Frey equations. These hybrid films were characterized by powder XRD, FTIR, SEM, DMTA, and TGA. The structure property correlation, intermolecular/intramolecular hydrogen bonding, the surface morphology, and viscoelastic properties were studied. These results showed an increase in Tg and thermal stability of the hybrid coatings than the base polymer. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Polyurethane–acrylic (PU–AC) hybrid latexes were prepared. Main monomers for PU preparation were isophorone diisocyanate, DMPA (dimethylol propanic acid) and polypropylene oxides (PPO) of different molecular weights. Acrylic monomers included butyl acrylate, methyl methacrylate and a crosslinker, trihydroxymethyl propane triacrylates (TMPTA). Several important ingredients in PU–AC latex preparation, such as surfactants, initiator, DMPA and PU/AC ratio, etc., were varied, and their effects on latex properties studied. Compared with surfactant free latexes, a sharp increase in particle size was observed in latexes done with 0.1% of surfactant regardless of the nature of the surfactants used (anionic, nonionic and anionic with long chain of amphiphilic alkylphenyl polyethoxylate). Further increase in surfactant content, however, led to latexes with smaller particle size and narrower particle size distribution when compared between latexes prepared using a same surfactant. When amount of the oil soluble initiator, azobisisobutyronitrile, was increased, AC monomers conversion was increased. It is interesting to observe that PPO with long propylene oxides brought about larger particle size combined with broader size distribution and less charge on particle surface; whereas lower DMPA levels led to latexes also of larger size combined with broader size distribution but more charges on particle surface. AC monomer crosslinker, TMPTA, contributed to reduce particle size, narrower size distribution and lower particle surface charges. By increasing AC amount in PU–AC latex, latex particle size significantly increased accompanied by a remarkable increase in particle surface charges. Mechanisms of particle formation and of DMPA stabilization were discussed in order to understand the experimental results.  相似文献   

15.
This article reports the development of moisture cure polyurethane–urea coatings. The coating has been developed using different generations of novel 1,2,3-triazole core containing hyperbranched polyester polyols (THBP). For the synthesis of THBP, the core molecule, tetra hydroxyl-terminated di-triazole (THTD), has been synthesized by click reaction involving ethylene diazide and 2-butyne-1,4-diol. The polycondensation reaction between the core THTD and 2,2-bis (hydroxymethyl) propionic acid (Bis-MPA) at different mole ratios has been used to get first (THBPG-1), second (THBPG-2), and third (THBPG-3) generations of triazole core hyperbranched polyesters. The structural investigations of these THBPs have been carried out by 1H NMR, 13C NMR, and FTIR spectroscopy. The different generations of THBPs were further reacted with 1-isocyanato-4-[(4-isocyanatocyclohexyl) methyl] cyclohexane (H12-MDI) at OH:NCO ratio of 1:1.2 to get –NCO terminated triazole core hyperbranched polyurethanes. They were cured under atmospheric moisture to get hyperbranched polyurethane–urea coatings and were named as THBPUG-1, THBPUG-2, and THBPUG-3. FTIR has been used to confirm the formation of polyurethane coatings. The TGA and DMTA have been used to determine the thermal stability and dynamic mechanical properties of the coatings, respectively. The corrosion resistance properties of the coatings have been studied by salt spray and electrochemical test. The coatings were also evaluated for microbial resistance. The results indicate that the thermal stability, glass transition temperature, and corrosion resistance properties increase with an increase in generation number of THBPs used for coating development. All three generations of coating films show excellent antimicrobial activity. Based on overall combined structure–property relationship study, these types of coatings will be useful as multifunctional applications in marine and moist environments.  相似文献   

16.
In this work, the effect of synthesizing shape memory polyurethanes in aqueous dispersions instead of in organic solvents on the structure and properties of the obtained polymers was investigated. Shape memory polyurethanes based on polycaprolactone diol and isophorone diisocyanate were synthesized by two routes: (1) aqueous dispersion (PU/SMWATER) and (2) dissolution in THF (PU/SMTHF). The samples were analyzed by infrared spectroscopy (FTIR), X‐ray diffraction (XRD), static light scattering (SLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical tests. The aqueous dispersion method led to the production of polyurethanes with a higher degree of phase separation and a higher degree of crystallinity. The morphology of the obtained polyurethanes demonstrated that PU/SMWATER displays a structure with better defined phase separated domains. The polyurethanes exhibited similar average molar masses, soft segment glass transitions (Tgs) and mechanical properties. The lower degrees of phase separation and crystallinity of the PU/SMTHF led to lower values for the shape memory properties (shape recovery ratio (Rr)). The observed changes in the structure of the polyurethanes due to the replacement of organic solvent by an aqueous dispersion during their syntheses confirmed the preparation of shape memory polyurethanes with enhanced shape memory properties. POLYM. ENG. SCI., 57:432–440, 2017. © 2016 Society of Plastics Engineers  相似文献   

17.
A series of waterborne polyurethanes (WBPU) containing different amount of 2,2‐bis(hydroxymethyl) propionic acid (DMPA) were synthesized using prepolymer mixing process. Relationships between the DMPA content and physical, mechanical, and thermal properties as well as adhesive behavior at different condition were investigated. Stable aqueous dispersions of WBPU were obtained when the DMPA content was more than 10 mol %. At higher DMPA content, the particle size of the WBPU dispersion was lower but the viscosity of the dispersion was higher. Water swelling and tensile strength of the films increased with increasing of DMPA content. The optimum adhesive strength of WBPU adhesives was found to be depended on the DMPA content, pressing temperature, and pressure on adhesion process. The adhesive strength of WBPU adhesives increased with increasing DMPA content. The optimum pressing temperature decreased with increasing DMPA content. The adhesive strength of WBPU adhesives increased with increasing pressure up to 15 kg f/cm2 and then leveled off. The optimum pressing temperature of WBPU adhesives samples containing 24.02, 22.05, and 17.05 mol % DMPA was about 100, 120, and 140°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5684–5691, 2006  相似文献   

18.
Poly(urethane‐benzoxazine)/clay hybrid nanocomposites (PU/Pa–OMMTs) were prepared from an in situ copolymerization of a polyurethane (PU) prepolymer and a monofunctional benzoxazine monomer, 3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (Pa), in the presence of an organophilic montmorillonite (OMMT), by solvent method using DMAc. OMMT was made from cation‐exchange of Na‐montmorillonite (MMT) with dodecyl ammonium chloride. The formation of the exfoliated nanocomposite structures of PU/Pa‐OMMT was confirmed by XRD from the disappearance of the peak due to the basal diffraction of the layer‐structured clay found in both MMT and OMMT. DSC showed that, in the presence of OMMT, the curing temperature of PU/Pa lowered by ca. 60°C for the onset and ca. 20°C for the maximum. After curing at 190°C for 1 h, the exothermic peak on DSC disappeared. All the obtained films of PU/Pa–OMMT were deep yellow and transparent. As the content of OMMT increased, both the tensile modulus and strength of PU/Pa–OMMT films increased, while the elongation decreased. The characteristics of the PU/Pa–OMMT films changed from plastics to elastomers depending on OMMT content and PU/Pa ratio. PU/Pa–OMMT films also exhibited excellent resistance to the solvents such as tetrahydrofuran, N,N‐dimethylformamide and N‐methyl‐2‐pyrrolidinone. The thermal stability of PU/Pa were enhanced remarkably even with small amount of OMMT. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4075–4083, 2003  相似文献   

19.
以甲苯-2,4二异氰酸酯(TDI)和三羟甲基丙烷(TMP)为单体,采用反应官能团异单体法合成第3到6代超支化聚氨酯(HBPU),对纯后的产物进行红外光谱,X射线衍射和差示扫描量热分析,并研究了硬脂酸改性HBPU(HBPU-SA)对线形PU力学性能的影响。结果表明,TDI中的异氰酸酯基(-NCO)反应完全,得到的HBPU的结晶性差,第3代到第6代HBPU晶格的层间距分别为0.41、0.46、0.475、0.414 nm;随着HBPU代数的增加,其玻璃化转变温度逐渐由第3代的117.29 ℃降低至第6代的69.14 ℃;HBPU-SA 含量为15 %(质量分数,下同)时,线形PU/HBPU-SA共混物的拉伸强度和伸长率比纯线形PU分别提高了4.1和4.2倍。  相似文献   

20.
《Ceramics International》2022,48(3):3751-3756
Beta-gallium oxide (β-Ga2O3) thin films were prepared on a MgO (100) substrate under different oxygen flow ratios via magnetron sputtering. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and UV–visible near-infrared (UV–vis–NIR) analyses were conducted to study how the oxygen flow ratio affected the crystalline quality and the surface topography of the films. Microstructure analysis revealed a clear out-of-plane orientation of β-Ga2O3 (100) || MgO (100). The film deposited under an oxygen flow ratio of 1% presented the optimal single-crystalline structure, while excess oxygen was confirmed to negatively impact the crystallization characteristics of the films. SEM measurements indicated that the increase in the oxygen flow ratio reduced the grain size and RMS roughness. The average transmittance of the β-Ga2O3 films in the visible range exceeded 83%, with a broad luminescence band exhibited at approximately 485 nm in the photoluminescence (PL) spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号