首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A straightforward approach has been developed for fabricating antibacterial and antistatic epoxy coatings by using polyaniline-chitosan modified TiO2 ternary nanocomposite. This nanocomposite was synthesized through the following steps. First, chitosan was grafted onto the TiO2 nanoparticles and then final nanocomposite was prepared via solution polymerization of aniline. Electrical conductivity measurement revealed that nanocomposite with 7.5 wt % of the modified TiO2 nanoparticles has noticeably higher conductivity compared to polyaniline. Evaluating the coatings' antibacterial property indicated epoxy coatings with the content of ternary nanocomposite show significant bactericidal activity against Gram-positive bacteria and have acceptable antibacterial action against Gram-negative ones. Also, obtained results showed that the ternary nanocomposite would greatly decrease coatings' surface resistivity and when nanocomposite content is about 2 wt % surface resistivity is about 3 × 107 Ω sq−1. On the contrary, the coating with nanocomposite loading exhibits improved thermal and mechanical performance compared to the coating made of neat epoxy. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47629.  相似文献   

2.
《Polymer Composites》2017,38(4):699-707
This study concentrates on the effect of organophilic montmorillonite (OMMT) nanolayers on conductivity, structure, morphology, and mechanical properties of the polypropylene/polyaniline (PP/PANI) composites. The composite was prepared by in situ polymerization of aniline at different composition ratios in the presence of PP powder. The structure and conductivity of ternary PP/PANI/OMMT nanocomposites were compared with those of PP/PANI composites. DC electrical conductivity measurements indicated that electrical conductivity decreased in the presence of OMMT layers. Scanning electron microscopy showed that the surface of ternary nanocomposites have more rough regions. The interaction between PANI and OMMT was confirmed by Fourier transform infrared spectroscopy. The distribution of OMMT layers in the polymer matrix, as an effective parameter on the properties of nanocomposite, was investigated and confirmed using X‐ray diffraction and transmission electron microscopy. The results showed an exfoliated array for OMMT layers in the nanocomposite structure. The shear storage modulus for PP/PANI composites was lower than that for pure PP; however, it was increased for PP/PANI/OMMT nanocomposites. The data from the tensile and izod impact strength showed that the Young's modulus and izod impact strength were increased slightly by the addition of OMMT, whereas the elongation at break was decreased. POLYM. COMPOS., 38:699–707, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
Novel ferromagnetic semiconducting polyaniline PANI/TiO2 nanocomposites were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous medium, in the presence of colloidal TiO2 nanoparticles (d ∼ 4.5 nm), without added acid. The morphological, magnetic, structural, and optical properties of the PANI/TiO2 nanocomposites prepared at initial aniline/TiO2 mole ratios 80, 40, and 20 were studied by scanning electron microscopy, superconducting quantum interference device, X‐ray powder diffraction, FTIR, Raman, and UV‐Vis spectroscopies. The emeraldine salt form of linear PANI chains as well as the presence of phenazine units, branched PANI chains, and anatase crystalline structure of TiO2 in PANI/TiO2 nanocomposites was confirmed by FTIR and Raman spectroscopies. The electrical conductivity of synthesized composites was ∼10−3 S cm−1. The room temperature ferromagnetic response with coercive field of Hc ∼ 300 Oe and the remanent magnetization of Mr ∼ 4.35 × 10−4 emu/g was detected in all investigated PANI/TiO2 nanocomposites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Polyaniline/zinc composites and nanocomposites were prepared using solution mixing method. Zinc (Zn) particles with an average particle size of 60 μm and zinc nanoparticles with an average particle size of 35 nm were used as fillers in polyaniline (PANI) matrix. Films and coatings of PANI/Zn composites and nanocomposites were prepared by the solution casting method. Electrical conductivity and anticorrosion properties of PANI/Zn composite and nanocomposite films and coatings with different zinc loadings were evaluated. According to the results, electrical conductivity and anticorrosion performances of both PANI/Zn composites and nanocomposites were increased by increasing the zinc loading. Also results showed that the PANI/Zn nanocomposite films and coatings have better electrical conductivity and corrosion protection effect on iron coupons compared to that of PANI/Zn composite.  相似文献   

5.
Conventional polymer blending has a shortcoming in conductivity characteristic. This research addresses the preparation of conductive thermoplastic natural rubber (TPNR) blends with graphene nanoplates (GNPs)/polyaniline (PANI) through melt blending using an internal mixer. The effect of PANI content (10, 20, 30, and 40 wt %) on the mechanical and thermal properties, thermal and electrical conductivities, and morphology observation of the TPNR/GNPs/PANI nanocomposites was investigated. The results showed that the tensile and impact properties as well as thermal conductivity of nanocomposite had improved with the incorporation of 3 wt % of GNPs and 20 wt % of PANI as compared to neat TPNR and reduced with further increase of the PANI content. It was observed that the GNPs and PANI acted as a critical component to improve the thermal stability and electrical conductivity of the TPNR/GNPs/PANI nanocomposites. The most improved conductivity of 5.22 E-5 S/cm was observed at 3 wt % GNPs and 40 wt % PANI. Variable-pressure scanning electron microscopy micrograph revealed the good interaction and distribution of GNPs and PANI within TPNR matrix at PANI loadings lower than 30 wt %. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48873.  相似文献   

6.
Waterborne polyurethane/polydopamine (PDA) functional reduced graphene oxide (WPU/PDRGO) nanocomposites were prepared by in situ emulsification method. The presence of a PDA layer and the partial reduction of GO by PDA were confirmed by FTIR, XRD, Raman spectra, and TGA. It was found that the interfacial PDA layers facilitated the dispersion of the PDRGO sheets in the WPU matrix and enhanced mechanical properties of the WPU matrix. The resulting WPU/PDRGO nanocomposite coatings show excellent electrical conductivity (9.9?×?10?6–1.1?×?10?4 S cm?1) corresponding to a PDRGO content of 1–16 wt%. The obtained waterborne polyurethane/graphene nanocomposite dispersions are promising for anticorrosion, antistatic, conductive, and electromagnetic interference shielding coatings.  相似文献   

7.
The aim of this study was to fabricate needle like‐TiO2/polyrhodanine nanostructures by polymerizing rhodanine monomer on the TiO2 nanoparticles' surfaces and investigate their antibacterial activities. The structural, thermal, morphological, surface and electrical properties of non‐covalently functionalized nanoparticles were characterized by using FTIR, XPS, elemental analysis, TGA, XRD, SEM‐EDX, TEM, contact angle, and conductivity measurements. Characterization results confirmed the formation of needle like‐TiO2/polyrhodanine (PRh) core/shell hybrid nanostructures. Alterations on the surface and electrokinetic properties of the materials were characterized by zeta (ζ)‐potential measurements with the presence of various salts and surfactants. The ζ‐potential of needle like‐TiO2 was observed to increase from ?7.6 mV to +28.4 mV after forming a core/shell needle like‐TiO2/PRh nanocomposite structure and with the presence of cetyltrimethyl ammonium bromide (CTAB) surfactant. Thereby colloidally more stable dispersions were formed. Antibacterial properties of needle like‐TiO2/PRh were also tested against Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli by various methods and they showed good antibacterial activity. The highest killing efficiency was determined for needle like‐TiO2/PRh against E. coli by colony‐counting method as 0.95. TEM experiments also showed the immobilizations of the nanoparticles on E. coli and revealed the interactions between E. coli and the nanoparticles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41554.  相似文献   

8.
A conductive poly(aniline codoped with dodecyl benzene sulfonic acid and hydrochloric acid) [PANI‐D/H, yield: 32.2%, intrinsic viscosity ([η]): 1.39 dL/g, electrical conductivity: 7.3 S/cm] was synthesized by chemical oxidative polymerization from aniline‐dodecylbenzene sulfonic acid salt (A‐DS)/aniline‐hydrochloric acid salt (A‐HS) (6/4M ratio) in an aqueous system. Waterborne polyurethane (WBPU) dispersion obtained from isophorone diisocyanate/poly(tetramethylene oxide)glycol/dimethylol propionic acid/ethylene diamine/triethylene amine/water was used as a matrix polymer. The blend films of WBPU/PANI‐D/H with various weight ratios (99.9/0.1–25/75) were prepared by solution blending/casting. Effect of PANI‐D/H content on the mechanical property, dynamic mechanical property, hardness, electrical conductivity, and antistaticity of WBPU/PANI‐D/H blend films was investigated. The dynamic storage modulus and initial tensile modulus increased with increasing PANI‐D/H content up to 1 wt %, and then it was significantly decreased about the content. With increasing PANI‐D/H content, the glass transition temperature of soft segment (Tgs) and hard segment (Tgh) of WBPU/PANI‐D/H blend films were shifted a bit to lower the temperature. The tensile strength and hardness of WBPU/PANI‐D/H blend films increased a little with increasing PANI‐D/H content up to 0.5 wt %, and then it was dramatically decreased over the content. The elongation at break of WBPU/PANI‐D/H decreased with an increase in PANI‐D/H content. From these results, it was concluded that 0.5–1 wt % of PANI‐D/H was the critical concentration to reinforce those various properties of WBPU/PANI‐D/H blend films prepared in this study. The electrical conductivity of WBPU/ultrasonic treated PANI‐D/H (particle size: 0.7 μm) blend films prepared here increased from 4.0 × 10?7 to 0.33 S/cm with increasing PANI‐D/H content from 0.1 to 75 wt %. The antistatic half‐life time (τ1/2) of pure WBPU film was about 110 s. However, those of WBPU/ultrasonic treated PANI‐D/H blend films (τ1/2: 8.2–0.1 s, and almost 0 s) were found to decrease exponentially with increasing PANI‐D/H content (0.1–9 wt %, and above 9 wt %). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 700–710, 2004  相似文献   

9.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.  相似文献   

10.
Conventional cellulosic paper, rendered electro‐conductive, may hold considerable promise for diversified applications in such areas as electro‐magnetic interference shielding and energy storage. Here, an electro‐conductive cellulosic paper was prepared by surface application of multi‐walled carbon nanotubes (MWCNTs)/polyaniline (PANI) nanocomposites onto a conventional base paper. MWCNTs/PANI nanocomposites were prepared by in situ polymerization of aniline with different contents of MWCNTs and used as electro‐conductive filler for the fabrication of electro‐conductive surface‐coated paper. The achieved MWCNTs/PANI nanocomposites exhibited a core‐shell structure, as evidenced by TEM. Effects of feeding ratios of MWCNTs on the rheological behavior of nanocomposite coatings, as well as the mechanical properties and electrical conductivity of surface‐coated paper were studied. Results revealed that the rheological behavior of the nanocomposite coatings showed strong dependence on the MWCNTs content. Moreover, both the electro‐conductivity and mechanical properties of surface‐coated paper were improved as a function of surface application of MWCNTs/PANI nanocomposites, particularly, in presence of an optimum content of MWCNTs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46329.  相似文献   

11.
Polyurethane acrylate (PUA)-supported rGO/TiO2 electrical conductive and antibacterial nanocomposites were synthesized via in-situ polymerization. The well-dispersed rGO/TiO2 can serve as photoinitiator and give PUA material antibacterial property at the same time. The excellent UV-curing and antibacterial activity could be explained that the synergistic effect of rGO and TiO2, which could promote the effective electron/hole separation and thus generate various reactive species. After dopped the rGO/TiO2 into the PUA matrix, the PUA film became electric conductive. The obtained nanocomposites will have promising applications in high performance antibacterial coatings.  相似文献   

12.
This paper highlights the effect of different concentrations of titanium dioxide (TiO2) nanoparticles on the electrical and optical properties of silk fibroin (SF). TiO2 based SF nanocomposite films were prepared using the solvent casting method. Uniform dispersion and agglomeration of nanoparticles, in nanocomposite films, were observed by field emission SEM. The conductivity of pure SF and nanocomposite films was determined by a four-point probe and the TiO2 nanoparticles were found to bring high conductivity to the nanocomposite films. Dielectric strength improved with the addition of nanoparticles to the SF matrix. Dielectric constant and capacitance of the pure SF and nanocomposite films were measured using an LCR meter, which showed a 10-fold enhancement on the addition of nanoparticles in SF. A very unusual property, i.e. negative resistance, was observed during LCR meter analysis for the nanocomposite films for a particular range of frequency (200–550 kHz), voltage (1 V) and current (0.5–1.5 μA). TiO2 nanoparticles changed the semiconducting behavior of the SF films from p-type to n-type as measured by the Hall effect experiment. The optical properties of pure SF and nanocomposite films were measured using a UV–visible spectrophotometer. The increased concentration of nanoparticles in the SF has effectively enhanced the absorbing coefficient, refractive index and percentage transmittance and reduced the bandgap energy. These SF/TiO2 nanocomposite films have shown the potential to be used as dielectric and high refractive index material for optoelectronics applications. © 2021 Society of Industrial Chemistry.  相似文献   

13.
Conducting polyaniline (PANI) is being explored as promising material for protection of metals against corrosion. It has the possibility of making smart coatings on metals, which can prevent corrosion even in scratched areas where bare metal surface is exposed to the aggressive environment. However, PANI coatings have poor barrier and mechanical properties. The barrier property of coatings can be enhanced by the addition of appropriate filler particles. Also it has been demonstrated that nanoparticulate fillers give much better barrier properties even at lower concentrations. In this study, the effect of zinc nanoparticles on the anticorrosive property of PANI coating on iron samples has been investigated. The PANI/Zn nanocomposite was synthesized by in situ polymerization of aniline in the presence of Zn nanoparticles. The nanocomposite was characterized by using FTIR, conductivity measurement, cyclic voltammetry, and AFM techniques. Results showed that PANI/Zn nanocomposite coating has improved corrosion protection effect when compared with pure PANI coating. The corrosion current of PANI/Zn coated samples were found to be much lower than that of pure PANI coated samples. The results were referred to the good barrier properties of Zn nanoparticles and improvement in electrochemical corrosion protection of PANI coating in the presence of Zn nanoparticles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
《Ceramics International》2021,47(21):29598-29606
A hybrid nanocomposite comprising nanosized ZrO2 and graphene nanoplatelet (GNP)-reinforced Cu matrix was synthesised via powder metallurgy. The influence of sintering temperature and GNP content on the electrical and mechanical behaviour of the Cu–ZrO2/GNP nanocomposite was investigated. The ZrO2 concentration was fixed at 10% for all the composites. Upon increasing the GNP concentration up to 0.5%, a significant improvement was observed in the compressive strength, microhardness, and electrical conductivity of the composite. Furthermore, the properties were significantly improved by increasing the sintering temperature from 900 to 1000 °C. The compressive strength, hardness, and electrical conductivity of Cu–10%ZrO2/0.5%GNP were higher than those of the Cu–ZrO2 nanocomposite by 60, 21, and 23.8%, respectively. This improvement in the mechanical properties is because of the decrease in the crystallite size and dislocation spacing, which increases the dislocation density, thereby increasing the impedance towards dislocation movement. The lower stacking fault energy of the hybrid nanocomposites enables easier electron transfer within and between the Cu grains, resulting in an improved electrical conductivity. The enhancement in strength and electrical conductivity were aided by the GNPs and ZrO2 nanoparticles that were dispersed widely in the Cu matrix.  相似文献   

15.
《Ceramics International》2019,45(10):13119-13126
The low fracture toughness of ceramic coatings has always hindered their wide application. In this study, an in-situ nanocomposite coating was prepared by the atmospheric plasma spraying of a 50 wt% Ti3AlC2-50 wt% Cu mixed powder. The in-situ nanocomposite coating was found to have an unusual microstructure with a nano-micrometre phase synergistic enhancement, which consisted of submicrometre-thick layers of Cu and nanoparticles of Cu(Al), Ti4O5, TiO2, and Al2TiO5. Thus, in the spraying process, Al was delinked out of Ti3AlC2, forming a large amount of plastic Cu(Al) with Cu. The delinked channel provided a path for Cu to diffuse into Ti3AlC2, which a spatial Cu network structure was formed in the coating. The in-situ nanocomposite coating has high fracture toughness and crack growth resistance by a three-point bending test. This paper reports a new method to prepare a high-fracture-toughness composite ceramic coating.  相似文献   

16.
Nano‐TiO2/carboxymethyl chitosan (CMCS)/poly(vinyl alcohol) (PVA) ternary nanocomposite hydrogels were prepared by freezing–thawing cycles and electron‐beam radiation with PVA, CMCS, and nano‐TiO2 as raw materials. The presence of nano‐TiO2 nanoparticles in the composite hydrogels was confirmed by thermogravimetry, Fourier transform infrared spectroscopy, and X‐ray powder diffraction. Field emission scanning electron microscopy images also illustrated that the TiO2/CMCS/PVA hydrogel exhibited a porous and relatively regular three‐dimensional network structure; at the same time, there was the presence of embedded nano‐TiO2 throughout the hydrogel matrix. In addition, the nano‐TiO2/CMCS/PVA composite hydrogels displayed significant antibacterial activity with Escherichia coli and Staphylococcus aureus as bacterial models. The antibacterial activity was demonstrated by the antibacterial circle method, plate count method, and cell density method. Also, with the Alamar Blue assay, the cytotoxicity of the composite hydrogel materials to L929 cells was studied. The results suggest that these materials had no obvious cytotoxicity. Thus, we may have developed a novel, good biocompatibility hydrogel with inherent photosensitive antibacterial activity with great potential for applications in the fields of cosmetics, medical dressings, and environmental protection. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44150.  相似文献   

17.
Spark plasma sintering was used to fabricate Cu/TiO2−x composites by adding Cu powder to nonstoichiometric titanium dioxide, TiO2−x. The composition and crystal forms of the composites were examined. The thermoelectric properties of the composites were measured and the effects of composite formation on these properties were discussed. The rule of mixture (ROM) of composite and general effective medium theory (GEM) were used to investigate the composite effects of the Cu/TiO2−x composites. The results revealed that the electrical resistivities of the composites was much lower than that of TiO2−x. As the added amount of Cu powder increased, the electrical properties of the composites shifted from semiconductor behavior to metallic behavior. The thermoelectric performances of the composites improved as a result of composition formation. The thermoelectric performance can be improved by adjusting the balance among electrical resistivity, thermal conductivity and the Seebeck coefficient, based on the composite effects.  相似文献   

18.
Conducting polyaniline (PANI)/titanium dioxide (TiO2) composite nanofibres with an average diameter of 80–100 nm were prepared by one‐step in situ polymerization method in the presence of anatase nano‐TiO2 particles, and were characterized via Fourier‐transform infrared spectra, UV/vis spectra, wide‐angle X‐ray diffraction, thermogravimetric analysis, and transmission electron microscopy, as well as conductivity and cyclic voltammetry. The formation mechanism of PANI/TiO2 composite nanofibres was also discussed. This composite contained ~ 65% conducting PANI by mass, with a conductivity of 1.42 S cm?1 at 25°C, and the conductivity of control PANI was 2.4 S cm?1 at 25°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Poly(butylene adipate‐co‐terephthalate) (PBAT) composites containing silver‐silica (Ag‐SiO2) were prepared using an in‐situ sol–gel process. Maleic anhydride‐grafted PBAT (PBAT‐g‐MA) and multihydroxyl‐functionalized Ag‐SiO2 were used to improve the compatibility and dispersibility of Ag‐SiO2 within the PBAT matrix. The composites were characterized morphologically using transmission electron microscopy and chemically using Fourier transform infrared spectrometry. The existence of Ag‐SiO2 nanoparticles on the substrate was confirmed by the ultraviolet–visible absorption spectra. The antibacterial and antistatic properties of the composites were evaluated whether SiO2 enhanced the electrical conductivity was tested as well as whether Ag enhanced the antibacterial activity of the PBAT‐g‐MA/SiO2 or PBAT/SiO2 composites. The PBAT‐g‐MA/SiO2 or PBAT/SiO2 composite that contained Ag had better antibacterial activity (more than 1.3‐fold). The functionalized PBAT‐g‐MA/Ag‐SiO2 composite can markedly enhanced antibacterial and antistatic properties due to the carboxyl groups of maleic anhydride, which acted as coordination sites for the Ag‐SiO2 phase, allowing the formation of stronger chemical bonds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A novel Cu2O/TiO2/Bi2O3 ternary nanocomposite was prepared, in which copper oxide improves the visible light absorption of TiO2 and bismuth oxide improves electron–hole separation. The ternary composite exhibited extended absorption in the visible region, as determined by UV–Vis diffuse reflectance spectroscopy. High-resolution transmission electron microscopy images showed close contact among the individual semiconductor oxides in the ternary Cu2O/TiO2/Bi2O3 nanocomposite. Improved charge carrier separation and transport were observed in the Cu2O/TiO2/Bi2O3 ternary composite using electrochemical impedance spectroscopy and photocurrent analysis. TiO2 modified with bismuth and copper oxides showed exceptional photocatalytic activity for hydrogen production under natural solar light. With optimum bismuth and copper oxide loadings, the Cu2O/TiO2/Bi2O3 ternary nanocomposite exhibited an H2 production (3678 μmol/h) 35 times higher than that of bare TiO2 (105?μmol/h). The synergistic effect of improved visible absorption and minimal recombination was responsible for the enhanced performance of the as-synthesized ternary nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号