首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
《Ceramics International》2022,48(22):32804-32816
Cansas-III SiC fibers were exposed in argon, air and wet oxygen (12%H2O+8%O2+80%Ar) atmospheres for 1 h at 1000–1500 °C. The pristine fiber consisted of β-SiC, free carbon and SiCxOy phases. After exposure in air and wet oxygen, an amorphous SiO2 layer with embedding α-cristobalite crystals formed, while stacking faults were generated in the SiC core to release the residual stress. With the increasing oxidation temperature, lots of pores formed in the oxide layer, accompanied with the thickening, cracking and spallation of oxide layer. The average tensile strength decreased with the exposure temperature increasing and the exposure atmosphere deteriorating (argon→air→wet oxygen). After exposure at 1400 °C in argon and air, the fiber strength retention rates were 84% and 70%, respectively. However, after exposure at 1300 °C in wet oxygen, the strength retention rate was only 51%, indicating the accelerating oxidation and severe strength degradation of fibers.  相似文献   

2.
In this study, nanoscale composite SiC-ZrC ceramic fibres, derived from polyzirconocenecarbosilane (PZCS) via melt spinning, electron beam crosslinking, pyrolysis and sintering were investigated in detail. Compared with several commercial products of second-generation SiC fibres, the produced composite fibres exhibit improved thermal stability, mechanical properties and oxidation resistance. SiC grains in the fibre grew from 9.8 nm to 33.9 nm after annealing in an inert atmosphere at 1800 °C for 1 h, as well as decomposition of the SiCxOy phase and the growth of SiC grains affected the mechanical properties of the fibres, and the mechanical properties of the fibres were maintained at 1.1 GPa, accompanied by an increase in the modulus. After the fibres were oxidized at 1100~1400 °C for 1 h, a dense oxide layer of SiO2-ZrO2 was formed on the surface of the fibres, which slowed down the rate of further fibre oxidation, thus, the fibres exhibited excellent oxidation resistance.  相似文献   

3.
Monolithic high purity CVD β-SiC materials were successfully joined with a pre-sintered Ti3SiC2 foil via solid-state diffusion bonding. The initial bending strength of the joints (∼ 220 MPa) did not deteriorate at 1000 °C in vacuum, and the joints retained ∼ 68 % of their initial strength at 1200 °C. Damage accumulation in the interlayer and some plastic deformation of the large Ti3SiC2 grains were found after testing. The activation energy of the creep deformation in the temperature range of 1000 – 1200 °C in vacuum was ∼ 521 kJmol−1. During the creep, the linkage of a significant number of microcracks to form a major crack was observed in the interlayer. The Ti3SiC2 interlayer did not decompose up to 1300 °C in vacuum. A mild and well-localized decomposition of Ti3SiC2 to TiCx was found on the top surface of the interlayer after the bending test at 1400 °C in vacuum, while the inner part remained intact.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNTs) have been successfully coated with a thin SiCxOy coating when polycarbosilane (PCS) was used as precursor and pyrolyzed in a coke bed. Meanwhile, effect of PCS concentration on oxidation resistance of the coated MWCNTs is studied. The results showed that the pyrolysis products of PCS were composed of amorphous SiCxOy as the main phase, together with β-SiC and SiO2 as the minor phases whose amount increased a little with the increase of temperature from 1000 °C to 1500 °C. The thickness of SiCxOy coating on the surface of MWCNTs increased a little from 1 wt.% to 5 wt.%, but decreased dramatically with PCS concentration in the range of 10-30 wt.%. The oxidation resistance of the coated MWCNTs was greatly improved in comparison with as-received ones. The oxidation peak temperature of the coated MWCNTs reached 783.7 °C, much higher than 652.2 °C for as-received ones.  相似文献   

5.
《Ceramics International》2020,46(14):21920-21924
A novel process was investigated to produce recrystallized silicon carbide through β-α phase transformation. The specimen was prepared from carbon and β-SiC powder mixture, first by infiltration with liquid silicon at 1500 °C to form β-SiC preform with a high density, and then by heating it further up to 2200 °C. When the β-SiC particles were transformed into α-SiC at 2200 °C, the rapid grain growth occurred of the α-SiC by consuming β-SiC particles, resulting in an interconnected network structure with huge and elongated α-SiC grains. The specimen recrystallized at 2200 °C had a measured density of 2.7 g/cm3 and strength of 134 MPa. The infiltration behavior, microstructure evolution and mechanical properties of the recrystallized silicon carbide were examined and discussed.  相似文献   

6.
The thermal stability of alumino-silicate fibre (Nextel 720)/porous mullite matrix composites was investigated in the temperature range between 1300 and 1600°C. In the as-prepared state the fibres consist of mullite plus α-Al2O3, while the porous mullite matrix includes minor amounts of a SiO2-rich glass phase. Temperature-controlled reactions between the silica-rich glass phase of the matrix and α-Al2O3 at the rims of the fibres to form mullite have been observed. At the end of this process, virtually all glass phase of the matrix is consumed. Simultaneously, alumina-free layers about 1 μm thick are formed at the periphery of the fibres. The mullite forming process is initiated above about 1500°C under short time heat-treatment conditions (2 h) and at much lower temperature (1300°C) under long-term annealing (1000 h). Subsequent to annealing below the thermal threshold, the composite is damage tolerant and only minor strength degradation occurs. Higher annealing temperatures, however, drastically reduce damage tolerance of the composites, caused by reaction-induced gradually increasing fibre/matrix bonding. According to this study, the thermal stability of alumino silicate (Nextel 720) fibre/mullite matrix composites ranges between 1500°C in short-term and 1300°C in long-term heat-treatment conditions.  相似文献   

7.
In this study, the high-content SiCnw reinforced SiC ceramic matrix composites (SiCnw/SiC CMC) were successfully fabricated by hot pressing β-SiC and sintering additive (Al2O3-Y2O3) with boron nitride interphase modification SiCnw. The effects of sintering additive content and mass fraction (5–25 wt%) of SiCnw on the density, microstructure, and mechanical properties of the composites were investigated. The results showed that with the increase of sintering additives from 10 wt% to 12 wt%, the relative density of the SiCnw/SiC CMC increased from 97.3% to 98.9%, attributed to the generated Y3Al5O12 (YAG) liquid phase from the Al2O3-Y2O3 that promotes the rearrangement and migration of SiC grains. The comprehensive performance of the obtained composite with 15 wt% SiCnw possessed the optimal flexural strength and fracture toughness of 524 ± 30.24 MPa and 12.39 ± 0.49 MPa·m1/2, respectively. Besides, the fracture mode of the composites with 25 wt% SiCnw content revealed a pseudo-plastic fracture behavior. It concludes that the 25 wt% SiCnw/SiC CMC was toughened by the fiber pull-outs, debonding, bridging, and crack deflection that can consume plenty of fracture energy. The strategy of SiC nanowires worked as a main bearing phase for the fabrication of SiC/SiC CMC providing critical information for understanding the mechanical behavior of high toughness and high strength SiC nanoceramic matrix composites.  相似文献   

8.
Phenyl (PPS) and methyl (PMS) containing polysiloxanes were pyrolyzed at elevated temperatures (900–1500 °C) under argon atmosphere to investigate the phase developments within the polymers. It was found that pyrolysis of the polymers under inert atmosphere up to 1300 °C leads to amorphous silicon oxycarbide (SiOxCy) ceramics. Conversions at higher temperatures results in the transformations into the crystalline β-SiC phases. Ceramic matrix composites (CMCs) were developed based on the active filler controlled pyrolysis (AFCOP) of polysiloxanes with active Ti filler additions. CMC monoliths were prepared with 60–80 wt.% of active Ti particulates blended into polymer precursors. Green bodies of the composites were made by warm pressing under 15 MPa pressure and ceramics were obtained by pyrolysis at elevated temperatures between 900 and 1500 °C under argon atmosphere. The results showed that due to the incorporation of active Ti fillers, formation of crystalline phases such as TiC, TiSi, and TiO occured within the amorphous matrix due to the reactions between the Ti and the polymer decomposition products. The microstructural and mechanical characterization results of the composites are presented within the paper.  相似文献   

9.
Two types of Si3N4 fibers with different oxygen contents were annealed in a nitrogen atmosphere at 1500 °C for 1 h. After annealing, the fiber (SN-L) containing 0.5 wt% oxygen crystallized to α-Si3N4 but lost its strength, whereas the fiber (SN-H) containing 4.2 wt% oxygen was amorphous and retained 63.6% of its strength. The phase transition in these fibers was mainly influenced by the oxygen level. The lower oxygen content in the SN-L favored the precipitation of an almost stoichiometric composition of α-Si3N4 initially at ~1450 °C with an activation energy (Ea) of 663.357 kJ/mol. Nanopores existing naturally in the fiber promoted crystallization via heterogeneous nucleation. SN-H precipitated as an amorphous SiNxOy metaphase preferentially at ~1400 °C with an Ea of 440.434 kJ/mol, owing to the higher oxygen content approaching that of Si2N2O. SiNxOy inhibited the crystallization of α-Si3N4, making SN-H more thermally stable than SN-L at temperatures above 1500 °C.  相似文献   

10.
《Ceramics International》2022,48(11):15364-15370
This study reports on the preparation and mechanical properties of a novel SiCnf/SiC composite. The single crystal SiC nanofiber(SiCnf) reinforced SiC ceramic matrix composites (CMC) were successfully fabricated by hot pressing the mixture of β-SiC powders, SiCnf and Al–B–C powder. The effects of SiCnf mass fraction as well as the hot-pressing temperature on the microstructure and mechanical properties of SiCnf/SiC CMC were systematically investigated. The results demonstrated that the 15 wt% SiCnf/SiC CMC obtained by hot pressing (HP) at 1850 °C with 30 MPa for 60 min possessed the maximum flexural strength and fracture toughness of 678.2 MPa and 8.33 MPa m1/2, respectively. The nanofibers pull out, nanofibers bridging and cracks deflection were found by scanning electron microscopy, which are believed can strengthen and toughen the SiCnf/SiC CMC via consuming plenty of the fracture energy. Besides, although the relative density of the prepared SiCnf/SiC CMC further increased with the sintering temperature rose to 1900 °C, the further coarsend composites grains results in the deterioration of the mechanical properties for the obtained composites compared to 1850 °C.  相似文献   

11.
《Ceramics International》2017,43(16):13282-13289
A facile method was developed to synthesize SiOx spheres or dumbbell-shaped β-SiC whiskers on expanded graphite (SiOx/EG or β-SiC/EG) by silicon vapor deposition without catalyst. With the carbon black atmosphere, the above hybrids were synthesized above 1100 °C in a graphite crucible where silicon powder was placed under the expanded graphite (EG). The growth of SiOx spheres is controlled by vapor-solid mechanism at 1100 °C and 1200 °C. Namely, the active carbon atoms absorbed SiO (g) and Si (g) to form SiC nuclei. Then, the SiO2, residual SiO (g) and Si (g) deposited on SiC nuclei to form SiOx spheres. At 1300 °C and 1400 °C, the same SiOx spheres formed on EG as well as many dumbbell-shaped β-SiC whiskers. The growth of dumbbell-shaped β-SiC whiskers is controlled by vapor-vapor and vapor-solid mechanism successively. In a word, firstly, the β-SiC whiskers with defects formed via the reaction between Si (g) and CO (g). After that, the SiO2, residual SiO (g) and residual Si (g) preferentially deposited on defects, then deposited on other parts of β-SiC whiskers to form dumbbell-shaped SiC whiskers.  相似文献   

12.
The effect of thermal annealing on structure and mechanical properties of amorphous SiCxNy (y ≥ 0) thin films was investigated up to 1500°C in air and Ar. The SiCxNy films (2.2–3.4 μm) were deposited by reactive DC magnetron sputtering on Si, Al2O3 and α‐SiC substrates without intentional heating and at 600°C. The SiC target with small excess of carbon was sputtered at various N2/Ar gas flow ratios (0–0.48). The nitrogen content in the films changes in the range 0–43 at.%. Hardness and elastic modulus (nanoindentation), change in film thickness, film composition, and structure (Raman spectroscopy, XRD) were investigated in dependence on annealing temperature and nitrogen content. All SiCxNy films preserve their amorphous structure up to 1500°C. The hardness of all as‐deposited and both air‐ and Ar‐annealed SiCxNy films decreases with growth of nitrogen content. The annealing in Ar at temperatures of 1100°C–1300°C results in noticeable hardness growth despite the ordering of graphite‐like structure in carbon clusters in nitrogen free films. Unlike the SiC, this graphitization leads to hardness saturation of SiCN films starting above 900°C, especially for films with higher nitrogen content (deposited at higher N2/Ar). This indicates the practical hardness limit achievable by thermal treatment for SiCxNy films deposited on unheated substrates. The ordering in carbon phase is facilitated by the presence of nitrogen in the films and its extent is controlled by the N/C atomic ratio. The suppression of graphitization was observed for N/C ranging between 0.5–0.7. Films deposited at 600°C show higher hardness and oxidation resistance after annealing in comparison with those deposited on unheated substrates. Hardness reaches 40 GPa for SiC and ~28 GPa for SiCxNy (35 at.% of nitrogen). Such a high hardness of SiC film stems from its partial crystallization. Annealing of SiCxNy film (35 at.% of N) in Ar at 1400°C is accompanied by formation of numerous hillocks (indicating heterogeneous structure of amorphous films) and redistribution of film material.  相似文献   

13.
Based on the structure characteristic of Ti3SiC2 and the easy formation of Ti3Si1−xAlxC2 solid solution, a transient liquid phase (TLP) bonding method was used for bonding layered ternary Ti3SiC2 ceramic via Al interlayer. Joining was performed at 1100–1500 °C for 120 min under a 5 MPa load in Ar atmosphere. SEM and XRD analyses revealed that Ti3Si(Al)C2 solid solution rather than intermetallic compounds formed at the interface. The mechanism of bonding is attributed to aluminum diffusing into the Ti3SiC2. The strength of joints was evaluated by three point bending test. The maximum flexural strength reaches a value of 263 ± 16 MPa, which is about 65% of that of Ti3SiC2; for the sample prepared under the joining condition of 1500 °C for 120 min under 5 MPa. This flexural strength of the joint is sustained up to 1000 °C.  相似文献   

14.
In this study, porous SiC ceramics with interconnected huge plate-like grains were fabricated from oxidized β-SiC powder with 1 wt% B4C. When the β–α SiC phase transformation occurred at 2100 °C, rapid grain growth of α-SiC consumed the unstable β-SiC matrix resulting in an interconnected network structure with huge plate-like grains. The oxidation of β-SiC powder and the addition of B4C are necessary conditions for rapid grain growth. The observed results are discussed based on thermodynamic considerations. The measured porosity of the specimens sintered at 2100 °C for 30 min was 47% and the mean pore size was 6–7 μm. The strength of the sintered specimen was 45 ± 5 MPa.  相似文献   

15.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   

16.
The influence of Y2O3 addition on the microstructure, thermo-mechanical properties and oxidation resistance of carbon fibre reinforced ZrB2/SiC composites was investigated. Y2O3 reacted with oxide impurities present on the surface of ZrB2 and SiC grains and formed a liquid phase, effectively lowering the sintering temperature and allowing to reach full density at 1900 °C. The presence of a carbon source (fibres) led to additional reactions which resulted in the formation of new secondary phases such as yttrium boro-carbides. Mechanical properties were significantly enhanced compared to the un-doped composite. Further tests at high temperatures resulted in strength increase up to 700 MPa at 1500 °C which was attributed to stress relaxation. Oxidation tests carried out at 1500 °C and 1650 °C in air showed that the presence of the Y-based secondary phases enhanced the growth of ZrO2 grains, but offered limited protection to oxygen due to the lower availability of surficial SiO2 formed from SiC.  相似文献   

17.
High-temperature structural electromagnetic wave (EMW) absorption materials are increasing in demand because they can simultaneously possess the functions of mechanical load-bearing, heatproof, and EMW absorption. Herein, SiCf/Si–O–C composites were prepared by precursor impregnation pyrolysis using continuous SiC fibers needled felt as reinforcement and polysiloxane as a precursor, respectively. The phase composition, microstructure, complex permittivity, and EMW absorption properties of SiCf/Si–O–C composites after annealing at various temperatures were investigated. The annealing at 1400–1500°C affects positively the EMW absorption performance of the composites, because the β-SiC microcrystals and SiC nanowires were generated by the activation of carbothermal reduction reaction in the composites, and the aspect ratio of SiC nanowires increased with the rise of temperature. The composites exhibit optimal EMW absorption performance, with the effective absorption bandwidth covering the entire X-band and the minimum reflection loss (RLmin) of −32.8 dB at 4.0 mm when the annealing temperature is raised to 1500°C. This is because that the impedance matching is improved as the rising of ε′ and decreasing of ε″ due to the conversion of free carbon in the composite into SiC nanowires.  相似文献   

18.
《Ceramics International》2016,42(7):8636-8644
Effects of oxidation cross-linking and sintering additives (TiN, B) on the microstructure formation and heat-resistant performance of freestanding SiC(Ti, B) films synthesized from Ti, B-containing polycarbosilane (TiB-PCS) precursor were investigated. TiB-PCS green films were first cross-linked for 1 h, 2 h, 3 h and 4 h, respectively, and then pre-sintered at 950 °C. Finally, they were sintered at 1800 °C to complete the conversion from organic films to inorganic SiC(Ti, B) films. The results reveal that curing time has a great impact on the uniformity and density of SiC(Ti, B) films. TiB-PCS films cured for 3 h yield the best quality SiC(Ti, B) films, which are composed of β-SiC crystals, C clusters, α-SiC nano-crystals, a small amount of TiB2 and B4C. TiB2 and B4C are both steady phases which can inhibit abnormal growth of β-SiC, effectively reduce sintering temperature and help consume excess C from decomposition of amorphous SiOxCy. After high temperature annealing at 1500 °C, 1600 °C and 1700 °C in argon, SiC(Ti, B) films still keep excellent mechanical properties, which makes them attractive candidate materials for microelectromechanical systems (MEMS) used at ultra-high temperatures (exceeding 1500 °C).  相似文献   

19.
Single crystalline mullite fibres, which are expected to be an excellent reinforcement for high temperature composite materials, can be produced by using the internal crystallisation method. The present paper sheds light to mechanisms of crystallisation of mullite fibres under conditions of the internal crystallisation method, which is actually crystallisation of a melt in the continuous channels of a molybdenum carcass. Mullite occurs to appear close to 2:1 composition independent of the composition of the melt. Inclusions of a silica-based glassy phase are also present on the periphery of a fibre. The glassy phase yields a decrease in the creep resistance of mullite fibres at temperatures above 1500 °C. Still, the fibres obtained from the raw material with the Al2O3/SiO2 molar ratio of 2.05 have excellent creep resistance at a temperature of 1400 °C and fairly high creep resistance at 1500 °C.  相似文献   

20.
The thermal decomposition of Ti3SiC2 in vacuum furnace up to 1500°C has been investigated. The results show that the mild decomposition of Ti3SiC2 commences at 1300°C and the higher the holding temperature, the larger the volatilization of Si atoms. The Ti3SiC2 decomposition occurs simultaneously on the surface and in the bulk. Four phases coexist at 1400°C and 1450°C and the Ti5Si3Cx phase appears in the bulk and/or surface. Diffusion distance, rate, and volatilization of Si contribute to the porous structure and the presence of Ti5Si3Cx. The evolution of furnace pressure reflects the decomposition kinetics of Ti3SiC2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号