首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
太阳能海水(苦咸水)淡化装置   总被引:1,自引:0,他引:1  
郑伟清  黄远锋 《新能源》1989,11(7):8-13
  相似文献   

2.
全世界约有14亿立方公里水资源,其中97.3%为海水,2.7%为淡水,而淡水中约75%又冰冻在两极地带,可供人类直接利用的淡水仅占0.36%,而且分布很不均匀。即使在水资源相对丰富的一些地区,由于人口的增长,工业的发展,以及水源的污染,人们也担心将来会缺水。我国是水资源贫乏国,人均水占有量在全世界居第88位。为了发展生产,保障人民生活需要,开发淡水资源意义十分重大。其中,海水淡化是人工获得淡水的途径之一,已引起越来越多国家的关注。淡化海水需消耗大量能源,这些能源可以是常规能源,也可以是太阳能等新能源。为了节约煤、油、  相似文献   

3.
本文阐述了一种与常规太阳能蒸馏不同的利用冷凝热和海水淡化时释放出的显热系统。经分析,其性能较佳。目前该系统正在埃及施工。如图1所示:它由一台加湿器、一台太阳能蒸馏器或通道,一台冷凝器和一个池子所组成。在加湿器中,进入的环境空气由池子中的温暖盐水加湿加热。如果盐水的出口温度高于环境温度,则返回到池水中,反之,则排出。太阳能蒸馏器是一个长条形玻璃盖板的通道,约长200米。其横载面如图(2)所示。  相似文献   

4.
提出一种开放式循环太阳能海水淡化系统,热力学效率和得水率是反映该系统能量利用程度及淡水产量和能耗关系的综合性指标,受加热、蒸发和冷凝三个环节制约,对诸多参数进行了分析,表明蒸发器入口海水温度和冷却水温度是影响系统性能的最重要两个参数,为改进系统性能和进行优化设计奠定了基础。  相似文献   

5.
6.
基于空气增湿-除湿海水淡化技术,采用热海水与空气逆流对喷的空气加湿器,设计了结合太阳能集热器的小型太阳能海水淡化系统。试验结果表明,该结构的空气加湿器具有很好的加湿效果,出口空气相对湿度可达到98%以上。当喷水温度为60℃、空气流量为11.8 L/s时,该小型海水淡化装置产水率可达3.42 kg/h。  相似文献   

7.
本文介绍已获国家专利(申请号:98214899.2)的太阳能海水淡化设备。设备利用高效太阳能集热技术加热海水,利用真空减压技术收集水蒸汽制备淡水,该设备是一种适于为缺乏淡水的海边和岛屿生活的人们提供淡水的处理设备。  相似文献   

8.
设计了一种具有折皱底面的多级迭盘式家用太阳能海水淡化装置。该装置由热管式真空集热管和多级海水淡化器两部分组成。在实际天气条件下,对该装置性能进行了测试,给出了该装置每0.5 h的产水量、累计产水量以及各级水盘的水温随运行时间的变化曲线。实验结果表明,在测试当天累计太阳辐射量22.46 MJ/(m^2.d)条件下,该装置产水量可达9.34 kg/(m^2.d),单位太阳辐射能产水量为1.50 kg/kWh;该装置的性能系数达到0.956,是传统单级盘式太阳能蒸馏器性能系数的2.7倍。该装置使用简便,运行可靠,维护费用低,在淡水缺乏的岛屿或偏远的咸水湖地区,是一种较为理想的家用太阳能海水淡化装置。  相似文献   

9.
介绍了吸收式太阳能海水淡化技术,简述了该技术的运行原理,分析了研究现状,总结了它的工艺特点、经济可行性以及与其他低品位能源相匹配等问题,并展望了其广阔的应用前景。  相似文献   

10.
横管降膜蒸发太阳能海水淡化装置的性能分析   总被引:3,自引:0,他引:3  
在分析横管降膜蒸发机理的基础上,设计了一台降膜蒸发太阳能海水淡化装置,并对影响该装置性能的因素进行了实验研究。结果表明,该装置比传统的叠盘式太阳能海水淡化装置瞬态时间短,蒸发效果好,运行温度低。保持合理的海水喷淋密度,使海水在管外降膜蒸发,可使装置在较宽的温度范围内(70~9012)运行,且具有较高的淡水产量和能源利用率(7096以上)。  相似文献   

11.
太阳能海水淡化技术   总被引:1,自引:0,他引:1  
太阳能海水淡化技术无污染、低能耗、生产规模可有机组合,是有效解决淡水危机的新途径.介绍了现有的海水淡化技术,分析了太阳能海水淡化,尤其是中高温槽式太阳能闪蒸法海水淡化系统.  相似文献   

12.
唐黎标 《太阳能》2003,(4):27-27
法国南锡化学工程实验室的化学家皮埃利戈夫,经过不断的失败和挫折后,终于研制成功一种结构简单、使用方便的太阳能淡化海水新装置,可大大节约淡化海水的成本。 在海湾地区,尽管海水取之不尽,但每个国家几乎都缺少淡水。虽然许多国家已建起海水淡化工厂,  相似文献   

13.
Here we show the fundamental tradeoffs that underpin the design of a distributed energy system with two objectives: the production and distribution of electric power driven by solar heating, and desalinated water produced by consuming solar power. We show analytically that larger solar power plants and desalination plants are more efficient than smaller plants. This phenomenon of economies of scale is countered by the greater losses associated with larger distribution networks. From this conflict emerges the proper allocation of nodes of production of power and water on a territory. We show that as the individual needs of power and water increase in time, the sizes of solar plants and desalination plants increase, and so does the size of the territory served by each power plant. At the same time, the territory served by each desalination plant decreases, and this means that the number of desalination plants allocated to one power plant increases.  相似文献   

14.
A scheme is proposed to desalinate sea water using solar energy for the Thar Desert of India. The scheme has been using solar energy for the Thar Desert of India. The scheme has been designed to produce about 5.25 × 107 m3/yr (13860 MG/yr) of fresh water with 11.52 km2 (4.5 miles2) of collector area. The solar collectors are rectangular concrete tubes, half buried in the ground, through which sea water flows and is heated by solar energy. The heated sea water is then flash evaporated in a multi-stage flash evaporator (MSF) unit to yield fresh water. Pumping of the sea water to the site and through the MSF unit is powered by 415 wind turbines each of 200 kW capacity. Economic analysis of the scheme shows that it compares favorably with the existing fossil fuel fired desalination plants of the equivalent capacity.  相似文献   

15.
There is growing international concern about pollution caused by chlorofluorocarbons (CFCs) and emissions of oxides of carbon, sulphur and nitrogen from fossil fuel sources. This has stimulated research to develop “environmentally-friendly” systems powered by renewable energies. This paper examines the application of a novel absorption system for water desalination. The absorption system could be powered by a renewable energy source (e.g. solar energy) or by a hybrid method (e.g. solar energy and natural gas). The absorption system offers several attractive features, including a high performance ratio, no pre-treatment required, extraction of water at low temperatures, absence of scaling, and minimal corrosion. Water is used as the working fluid and so the system is attractive on environmental grounds. The paper describes computer modelling of the system and its potential applications.  相似文献   

16.
17.
Water scarcity has become a chronic problem aggravated by climate change. One third of the world's population already lives in areas suffering moderate to high water stress; some 1.5 billion people lack ready access to drinking water. Desalination is in the course of becoming a major source of fresh water by tapping into the vast reserves of seawater and brackish water. Large scale desalination plants use either thermal or membrane processes which consume a great deal of energy. Economic implications of large energy requirements coupled with environmental concerns about carbon emissions spurred a growing interest in developing desalination processes that use renewable energy sources. Among these processes the humidification dehumidification (HD) of air, using solar energy, is a simple technology particularly suited for regions in developing countries where there is very low infrastructure and unskilled manpower.  相似文献   

18.
<正>一引言随着世界经济的发展,淡水资源已成为水资源匮乏地区制约经济发展的重要因素之一。我国是一个淡水资源缺乏的国家。以环渤海地区为例,创造的GDP约占全国的30%,但该地区人均水资源量为413m~3,仅为全国人均水平的19%。预计到2010年,  相似文献   

19.
Solar energy utilization in three different types of solar desalination systems is considered. The overall efficiency of a typical basin type solar desalination plant is 30 per cent or lower. The major design factors affecting energy utilization are basin temperature, condensing surface temperature and ambient air temperature. Basic reflection and thermal radiation from the evaporating surface and transparent cover are the major sources of heat energy loss in a solar still. The efficiency of a solar desalination plant can be improved by controlling radiation from the plant basin and by the reuse of the latent heat of condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号