首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An efficient stereocontrolled synthesis afforded alkoxymethylenephosphonate (MP) analogues of lysophosphatidic acid (LPA) and phosphatidic acid (PA). The pharmacological properties of MP-LPA and MP-PA analogues were characterized for LPA receptor subtype-specific agonist and antagonist activity using Ca(2+)-mobilization assays in RH7777 cells expressing the individual LPA(1)-LPA(3) receptors and CHO cells expressing LPA(4). In addition, activation of a PPARgamma reporter gene construct expressed in CV-1 cells was assessed. These metabolically stabilized LPA analogues exhibited an unexpected pattern of partial agonist/antagonist activity for the LPA G-protein-coupled receptor family and the intracellular LPA receptor PPARgamma. Analogues were compared with 18:1 LPA for activation of downstream signaling in HT-29 colon cancer cells, which exclusively express LPA(2), and both SKOV3 and OVCAR3 ovarian cancer cells, which express LPA(1), LPA(2), and LPA(3). Unexpectedly, reverse phase protein arrays showed that four MP-LPA and MP-PA analogues selectively activated downstream signaling in HT-29 cells with greater potency than LPA. In particular, the oleoyl MP-LPA analogue strongly promoted phosphorylation and activation of AKT, MEK, and pS6 in HT-29 cells in a concentration-dependent manner. In contrast, the four MP-LPA and MP-PA analogues were equipotent with LPA for pathway activation in the SKOV3 and OVCAR3 cells. Taken together, these results suggest that the MP analogues may selectively activate signaling via the LPA(2) receptor subtype, while simultaneously suppressing signaling through the LPA(1) and LPA(3) subtypes.  相似文献   

3.
Lysophosphatidic acid (LPA), a naturally occurring glycerophospholipid, can evoke various biological responses, including cell migration, proliferation and survival, via activation of G protein-coupled receptors (GPCRs). However, the role of LPA receptors and details of LPA signaling in migration are largely unexplored. In this study we detect the expression of LPA1 and LPA3 receptors in rat aortic smooth muscle cells (RASMCs). LPA stimulated RASMCs migration in a dose-dependent manner and induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell migration was significantly inhibited by specific LPA1/LPA3-receptor antagonist Dioctylglycerol pyrophosphate (8:0) (DGPP8.0) at higher concentration. Migration of cells toward LPA was partially, but significantly, reduced in the presence of SB-203580, a p38 MAPK inhibitor, but not PD98059, an ERK inhibitor. In addition, pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 MAPK, ERK phosphorylation and RASMCs migration. These data suggest that LPA-induced migration is mediated through the Gi-protein-coupled LPA1 receptor involving activation of a PTX-sensitive Gi / p38MAPK pathway.  相似文献   

4.
The synthesis and biological evaluation of the entire series of C3‐halogenated derivatives and bulkier substituents at the C8′′ position of the parent stilbene‐based RARβ‐selective agonist BMS641 4 c was undertaken. The synthesis uses an E‐selective Horner–Wadsworth–Emmons (HWE) condensation of C8‐substituted C5‐dimethyl dihydronaphthaldehyde and the benzylic phosphonates derived from the C3‐halogenated benzoates to construct the stilbene skeleton. Transactivation studies revealed the synergistic effect of small halogen atoms at C3 (F, Cl) and the moderately bulky phenyl group at C8′′ (in 4 b and 4 c ) to achieve RARβ selectivity. Our results, supported by computational studies, provide a structural rationale for the mixed agonist–antagonist activities of these arotinoids, which are potent agonists of the RARβ subtype and antagonists of the RARα paralogue. Moreover, transitions from partial agonists to inverse agonists and antagonists can be accomplished with the incorporation of the same halogen atoms into the structures of known modulators BMS701 ( 5 a ) and BMS493 ( 6 a ), which have bulkier substituents than phenyl (p‐tolyl and phenylethynyl, respectively) at C8′′. Conversely, incorporation of halogen atoms in 6 a converted the ligand from an RARβ inverse agonist ( 6 b ) to an antagonist ( 6 c ) or an agonist ( 6 d ). Amazingly, 6 a – c commonly acted as inverse agonists for RARα, while 6 d and 6 e acted as regular RARα antagonists, not affecting co‐repressor interaction. In the case of the mixed agonist/antagonist 5 a , C3‐halogenation yields inverse RARα and RARβ agonists ( 5 b – d ) with the exception of iodinated 5 e , which is a regular antagonist for both these receptors. Because RARβ gene expression is frequently deleted or epigenetically silenced in several tumor cells, the novel repertoire of receptor and function‐selective RAR agonists, mixed agonist/antagonists, regular antagonists, and inverse agonists will be useful in the elucidation of the mechanism of tumor suppression by retinoids.  相似文献   

5.
N‐Substituted trans‐3,4‐dimethyl‐4‐(3‐hydroxyphenyl)piperidines are a class of pure opioid receptor antagonists with a novel pharmacophore. This opioid receptor antagonist pharmacophore was used as a lead structure to design and develop several interesting and useful opioid receptor antagonists. In this review we describe: 1) early SAR studies that led to the discovery of LY255582 and analogues that are nonselective opioid receptor antagonists developed for the treatment of obesity; 2) the discovery and commercialization of LY246736 (alvimopan; ENTEREG®), a peripherally selective opioid receptor antagonist that accelerates the time to upper and lower GI recovery following surgeries that include partial bowel resection with primary anastomosis; and 3) the discovery and development of the potent and selective κ opioid receptor antagonist JDTic and analogues as potential pharmacotherapies for treating depression, anxiety, and substance abuse (nicotine, alcohol, and cocaine). In addition, the use of JDTic for obtaining the X‐ray structure of the human κ opioid receptor is discussed.  相似文献   

6.
S1P is the final product of sphingolipid metabolism, which interacts with five widely expressed GPCRs (S1P1-5). Increasing numbers of studies have indicated the importance of S1P3 in various pathophysiological processes. Recently, we have identified a pepducin (compound KRX-725-II) acting as an S1P3 receptor antagonist. Here, aiming to optimize the activity and selectivity profile of the described compound, we have synthesized a series of derivatives in which Tyr, in position 4, has been substituted with several natural aromatic and unnatural aromatic and non-aromatic amino acids. All the compounds were evaluated for their ability to inhibit vascular relaxation induced by KRX-725 (as S1P3 selective pepducin agonist) and KRX-722 (an S1P1-selective pepducin agonist). Those selective towards S1P3 (compounds V and VII) were also evaluated for their ability to inhibit skeletal muscle fibrosis. Finally, molecular dynamics simulations were performed to derive information on the preferred conformations of selective and unselective antagonists.  相似文献   

7.
Metabolically stabilized analogues of PtdIns(3,4,5)P3 have shown long‐lived agonist activity for cellular events and selective inhibition of lipid phosphatase activity. We describe an efficient asymmetric synthesis of two 5‐phosphatase‐resistant analogues of PtdIns(3,4,5)P3, the 5‐methylene phosphonate (MP) and 5‐phosphorothioate (PT). Furthermore, we illustrate the biochemical and biological activities of five stabilized PtdIns(3,4,5)P3 analogues in four contexts. First, the relative binding affinities of the 3‐MP, 3‐PT, 5‐MP, 5‐PT, and 3,4,5‐PT3 analogues to the Grp1 PH domain are shown, as determined by NMR spectroscopy. Second, the enzymology of the five analogues is explored, showing the relative efficiency of inhibition of SHIP1, SHIP2, and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), as well as the greatly reduced ability of these phosphatases to process these analogues as substrates as compared to PtdIns(3,4,5)P3. Third, exogenously delivered analogues severely impair complement factor C5a‐mediated polarization and migration of murine neutrophils. Finally, the new analogues show long‐lived agonist activity in mimicking insulin action in sodium transport in A6 cells.  相似文献   

8.
An alanine scan was performed on the novel κ opioid receptor (KOR) peptide ligand CJ‐15,208 to determine which residues contribute to the potent in vivo agonist activity observed for the parent peptide. These cyclic tetrapeptides were synthesized by a combination of solid‐phase peptide synthesis of the linear precursors, followed by cyclization in solution. Like the parent peptide, each of the analogues exhibited agonist activity and KOR antagonist activity in an antinociceptive assay in vivo. Unlike the parent peptide, the agonist activity of the potent analogues was mediated predominantly, if not exclusively, by μ opioid receptors (MOR). Thus analogues 2 and 4 , in which one of the phenylalanine residues was replaced by alanine, exhibited both potent MOR agonist activity and KOR antagonist activity in vivo. These peptides represent novel lead compounds for the development of peptide‐based opioid analgesics.  相似文献   

9.
The asymmetric synthesis and receptor pharmacology of (1S,2R,3R,5R,6S)-2-amino-3-Hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (+)-9 (HYDIA) and a few of its O-alkylated derivatives are described. The key step of the synthesis utilizes Sharpless' asymmetric dihydroxylation (AD-beta) for the kinetic resolution of a bicyclic racemic precursor olefin. In contrast to the bicyclic glutamate analogue LY354740, which is a potent and selective agonist for the group II metabotropic glutamate receptors (mGluRs), these new conformationally restricted and also hydroxylated or alkoxylated glutamate analogues are potent and selective antagonists for the group II mGluRs.  相似文献   

10.
The synthesis of methylene phosphonate, difluoromethylene phosphonate and phosphoramidate analogues of aspartyl phosphate, together with reduced analogues, is described. These compounds were shown to be effective inhibitors of aspartate-semialdehyde dehydrogenase (ASA-DH) from Escherichia coli. However, despite the structural similarity of the compounds, different patterns of inhibition were observed, indicative of two phases of recognition and binding. Correlation between measured inhibition constants with pK(a) values supports the theory that binding at the phosphate binding site is optimised for singly ionised phosphate analogues.  相似文献   

11.
Autotaxin (ATX, NPP2) is a member of the nucleotide pyrophosphate phosphodiesterase enzyme family. ATX catalyzes the hydrolytic cleavage of lysophosphatidylcholine (LPC) by lysophospholipase D activity, which leads to generation of the growth‐factor‐like lipid mediator lysophosphatidic acid (LPA). ATX is highly upregulated in metastatic and chemotherapy‐resistant carcinomas and represents a potential target to mediate cancer invasion and metastasis. Herein we report the synthesis and pharmacological characterization of ATX inhibitors based on the 4‐tetradecanoylaminobenzylphosphonic acid scaffold, which was previously found to lack sufficient stability in cellular systems. The new 4‐substituted benzylphosphonic acid and 6‐substituted naphthalen‐2‐ylmethylphosphonic acid analogues block ATX activity with Ki values in the low micromolar to nanomolar range against FS3, LPC, and nucleotide substrates through a mixed‐mode inhibition mechanism. None of the compounds tested inhibit the activity of related enzymes (NPP6 and NPP7). In addition, the compounds were evaluated as agonists or antagonists of seven LPA receptor (LPAR) subtypes. Analogues 22 and 30 b , the two most potent ATX inhibitors, inhibit the invasion of MM1 hepatoma cells across murine mesothelial and human vascular endothelial monolayers in vitro in a dose‐dependent manner. The average terminal half‐life for compound 22 is 10±5.4 h and it causes a long‐lasting decrease in plasma LPA levels. Compounds 22 and 30 b significantly decrease lung metastasis of B16‐F10 syngeneic mouse melanoma in a post‐inoculation treatment paradigm. The 4‐substituted benzylphosphonic acids and 6‐substituted naphthalen‐2‐ylmethylphosphonic acids described herein represent new lead compounds that effectively inhibit the ATX–LPA–LPAR axis both in vitro and in vivo.  相似文献   

12.
The extraction of actinides by homologs of dibutylalkyl phosphonates has been studied in detail. This study was taken up in order to understand the influence of the phosphorus-carbon bond in phosphonates on the extraction of actinides. In this context, dibutylhexyl phosphonate (DBHeP) and dibutyloctyl phosphonate (DBOP) were synthesized and characterized by various techniques. The physical properties of the two solvents and the extraction of nitric acid and actinides by these phosphonates were compared with those by dibutylbutyl phosphonate (DBBP). The physical properties such as density, viscosity, surface tension, refractive index, and solubility are reported here for the first time. Dispersion number, a dimensionless quantity that characterizes the ability of the solvent to separate from two-phase dispersion, is reported for all the three phosphonates. The extraction characteristics of actinides by these series of compounds are compared with those by tributyl phosphate (TBP).  相似文献   

13.
d -Glycero-d -manno-heptose-1β,7-bisphosphate (HBP) and d -glycero-d -manno-heptose-1β-phosphate (H1P) are bacterial metabolites that were recently shown to stimulate inflammatory responses in host cells through the activation of the TIFA-dependent NF-κB pathway. To better understand structure-based activity in relation to this process, a family of nonhydrolyzable phosphonate analogues of HBP and H1P was synthesized. The inflammation modulation by which these molecules induce the TIFA-NF-κB signal axis was evaluated in vivo at a low-nanomolar concentration (6 nM) and compared to that of the natural metabolites. Our data showed that three phosphonate analogues had similar stimulatory activity to HBP, whereas two phosphonates antagonized HBP-induced TIFA-NF-κB signaling. These results open new horizons for the design of pro-inflammatory and innate immune modulators that could be used as vaccine adjuvant.  相似文献   

14.
A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)–AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K–AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted.  相似文献   

15.
16.
Racemic N-(8-methoxy-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-10-ylmethyl)acetamide (compound 5) was previously identified as a novel selective MT(2) antagonist fulfilling the requirements of pharmacophore and 3D QSAR models. In this study the enantiomers of 5 were separated by medium-pressure liquid chromatography and behaved as the racemate. Compound 5 was modified at the acylaminomethyl side chain and at position C8. The resulting analogues generally behaved as melatonin receptor antagonists (GTPgammaS test) with a modest degree of selectivity (up to 10-fold) for the MT(2) receptor. Changes at the amide side chain led to a decrease in binding affinity, whereas 8-acetyl and 8-methyl derivatives 12 and 11, respectively, were as potent as the 8-methoxy parent compound 5. Docking experiments with an MT(2) receptor model suggested binding modes consistent with the observed SARs and with the lack of selectivity of the enantiomers of 5.  相似文献   

17.
The lysophosphatidic acid 3 receptor (LPA3) participates in different physiological actions and in the pathogenesis of many diseases through the activation of different signal pathways. Knowledge of the regulation of the function of the LPA3 receptor is a crucial element for defining its roles in health and disease. This review describes what is known about the signaling pathways activated in terms of its various actions. Next, we review knowledge on the structure of the LPA3 receptor, the domains found, and the roles that the latter might play in ligand recognition, signaling, and cellular localization. Currently, there is some information on the action of LPA3 in different cells and whole organisms, but very little is known about the regulation of its function. Areas in which there is a gap in our knowledge are indicated in order to further stimulate experimental work on this receptor and on other members of the LPA receptor family. We are convinced that knowledge on how this receptor is activated, the signaling pathways employed and how the receptor internalization and desensitization are controlled will help design new therapeutic interventions for treating diseases in which the LPA3 receptor is implicated.  相似文献   

18.
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor (GPCR) superfamily and mediate several physiological responses, such as blood pressure, food intake, sedation and memory retention. To understand the interactions between the NPY Y1 receptor subtype and its ligands, computer modeling was applied to the natural peptide agonist, NPY and a small molecule antagonist, BIBP3226. An agonist and antagonist binding domain was elucidated using mutagenesis data for the Y1 receptor as well as for other GPCR families. The agonist and antagonist ligands which were investigated appear to share common residues for their interaction within the transmembrane regions of the Y1 receptor structure, including Gln120, Asn283 and His306. This is in contrast to findings with tachykinin receptors where the binding domains of the non-peptide antagonists have very little in common with the binding domains of the agonist, substance-P. In addition, a hydrogen bond between the hydroxyl group of Tyr36 of NPY and the side chain of Gln219, an interaction that is absent in the model complex between Y1 and the antagonist BIBP3226, is proposed as one of the potential interactions necessary for receptor activation.   相似文献   

19.
Three phosphonate derivatives of methyl oleate (MeO) were chemically synthesized in a radical chain reaction and their physical and tribological properties investigated. The phosphonates differed from each other in the structure of the alkoxy groups attached to the phosphorous, which were as follows: methoxy, ethoxy, and n-butoxy. Phosphonylation eliminated the unsaturation in MeO and also introduced branching. The phosphonate oils had higher density and viscosity than MeO, which was attributed to the contribution of the heavier phosphorus atom in their structures, and to their higher molecular weights, respectively. The phosphonates also displayed improved oxidation stability and cold flow properties, which were attributed to the elimination of the double bond and the introduction of branching in their molecular structures, respectively. Tribological investigations were conducted using 4-Ball anti-wear (AW) and extreme pressure (EP) methods. Neat phosphonates displayed lower AW coefficients of friction and wear scar diameters than MeO. The improved AW results were attributed to the higher viscosity of the phosphonates, since the AW test is conducted in the mixed film regime. The phosphonates had no effect on EP weld point (WP) as neat oils or as 5 % additives in petroleum-based oils. In soy base oil, 5 % phosphonate additives displayed smaller improvement in WP than zinc dialkyl dithiophosphate (ZDDP). It is proposed that this lack of EP characteristics could be due to the high dissociation energy of C–P bonds in the phosphonates, compared to, for example, S–P bonds in ZDDP.  相似文献   

20.
Homologation of the glutamic acid chain together with conformational constraint is a commonly used strategy to achieve selectivity towards different types of glutamate receptors. We investigated the effects of a further increase in the distance between the amino acid moiety and the distal carboxylate group of model compounds (+/-)-1 and (+/-)-2 on their activity/selectivity profiles. We therefore synthesized new derivatives (+/-)-3-(+/-)-6, which are homologues of glutamic acid containing three additional carbon units. Moreover, because the potency of NMDA antagonists can be markedly increased by replacing the distal carboxylate with the bioisosteric phosphonate group, we also prepared the corresponding phosphonate derivatives (+/-)-7-(+/-)-10. All new compounds were submitted to binding assays with iGluRs, and derivatives (+/-)-3-(+/-)-6 were also tested in second messenger assays at representative mGluR subtypes. All the applied structural modifications were detrimental to the interaction with NMDA receptors. Conversely, structural variation of the nonselective mGluR ligand (+/-)-2 led to derivative (+/-)-5, which behaved as a selective group I metabotropic receptor antagonist. Notably, upon i.c.v. administration in DBA/2 mice, amino acid (+/-)-5 produced a significant protection against audiogenic seizures, whereas it was inactive after i.p. administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号