首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heat-pipe enhanced solar-assisted heat pump water heater   总被引:4,自引:0,他引:4  
A heat-pipe enhanced solar-assisted heat pump water heater (HPSAHP) is studied. HPSAHP is a heat pump with dual heat sources that combines the performance of conventional heat pump and solar heat pipe collector. HPSAHP operates in heat-pump mode when solar radiation is low and in heat-pipe mode without electricity consumption when solar radiation is high. HPSAHP can thus achieve high energy efficiency. A prototype was designed and built in the present study. An outdoor test for a HPSAHP in the present study has shown that COP of the hybrid-mode operation can reach 3.32, an increase of 28.7% as compared to the heat-pump mode COP (2.58).  相似文献   

2.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

3.
This communication deals with the effect of a temperature gradient, due to difference in temperatures of sunlit collector surface and the surface in contact with the working fluid (heat exchanger fluid), on the performance of solar water heater. The analysis is not restricted to any particular configuration of solar heater. Experimental study of a spiral solar water heater confirms the theoretical prediction of thermal loss with temperature gradient.  相似文献   

4.
The effect of solar radiation availability on the performance of different solar heating systems has been studied. The systems include a solar water heater, passive solar houses and district solar heating systems with seasonal heat storage. Also, different collector orientations and collector types have been investigated. The hourly radiation data were generated by a simple computational simulation procedure. It was found that district solar heating systems with concentrating collectors and passive solar houses showed the largest variations for the given conditions.  相似文献   

5.
There are various types of solar water heater system available in the commercial market to fulfill different customers’ demand, such as flat plate collector, concentrating collector, evacuated tube collector and integrated collector storage. A cost effective cum easy fabricated V-trough solar water heater system using forced circulation system is proposed. Integrating the solar absorber with the easily fabricated V-trough reflector can improve the performance of solar water heater system. In this paper, optical analysis, experimental study and cost analysis of the stationary V-trough solar water heater system are presented in details. The experimental result has shown very promising results in both optical efficiency of V-trough reflector and the overall thermal performance of the solar water heater.  相似文献   

6.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

7.
In the present investigation the performance behaviour of thermosyphonic circulation solar water heaters using packed bed collectors has been analysed. Iron chips, gravels and stones have been used as packing materials. Average tank water temperature, collector as well as system efficiency and mony pay-back for these packed bed solar water heaters are compared with those for solar water heater using a plane collector. Experimental results reveal that the performance of solar water heater improves appreciably by packing its collector with packing material. Among the packed-bed solar water heaters tested the iron chips packed-bed solar water heater gives the overall best performance.  相似文献   

8.
A performance study of forced circulation solar water heaters using packed-bed solar collectors is presented. Iron chips, gravel and stones have been used as packing materials. Thermal energy stored in the tank, system overall efficiency and pay-back capital for these solar water heaters are compared with those for solar water heaters using a plane collector. It is observed that the performance of the solar water heater is improved appreciably by packing its collector with packing material. A solar water heater using an iron chip, packed-bed collector shows the best performance.  相似文献   

9.
The effect of thermal conductivity of the absorber plate of a solar collector on the performance of a thermo-siphon solar water heater is found by using the alternative simulation system. The system is assumed to be supplied of hot water at 50 °C and 80 °C whereas both are used in domestic and industrial purposes, respectively. According to the Rand distribution profile 50, 125 and 250 l of hot water are consumed daily. The condition shows that the annual solar fraction of the planning functions and the collector's configuration factors are strongly dependent on the thermal conductivity for its lower values. The less dependence is observed beyond a thermal conductivity of 50 W/m °C for the solar improper fraction and above 100 W/m °C for the configuration factors. In addition, the number of air ducts and total mass flow rate are taken to show that higher collector efficiency is obtained under the suitable designing and operating parameters. Different heat transfer mechanisms, adding natural convection, vapor boiling, cell nucleus boiling and film wise condensation is observed in the thermo-siphon solar water heater with various solar radiations. From this study, it is found that the solar water heater with a siphon system achieves system characteristic efficiency of 18% higher than that of the conventional system by reducing heat loss for the thermo-siphon solar water heater.  相似文献   

10.
The free convection performance of a solar air heater with a cylindrical absorber centred to a conical concentrator for focusing incident solar radiation was studied. The primary objective was to heat air to higher temperatures than those obtainable in flat-plate collectors.The experiments were carried out and the data recorded in summer daytime, considering collector tilting angle and type of absorbing surface as the investigation parameters.It was found that a tilting angle under local latitude would be appropriate for collector installation. Although the efficiency of the heater at free convection conditions was very much smaller than flat-plate solar air-heaters, exit air temperatures reached up to 150 °C, which could allow utilisation in high temperature applications. A selective absorber surface improved appreciably the performance of the solar air-heater.  相似文献   

11.
This paper evaluates the performance of narrow-gap vertical mantle heat exchangers with a two-pass arrangement for use in pumped-circulation solar water heaters. Both measured mantle side and tank side heat transfer correlations have been developed and implemented in a TRNSYS model of a complete solar water heater incorporating this type of heat exchanger. Predictions of the annual solar contribution for mantle-tank systems are compared to direct-coupled systems. The direct-coupled systems are found to provide slightly higher annual energy saving than mantle-tank systems for standard domestic hot water demand in Australia. However, the reduction in performance is outweighed by the benefit of freeze protection provided by incorporating a collector loop heat exchanger in the system.  相似文献   

12.
The performance of two R-11-charged integrated solar water heater collectors was investigated experimentally for forced and natural circulation water flows. The heat transfer from the refrigerant loop to the hot water storage tank took place through a condenser of novel design integrated within the collector frame. The effect of the condenser inclination on the system efficiency was remarkable for natural circulation water flow but had no significant effect for forced circulation flow. The difference in thermal response between the refrigerant and water loops caused buildup of stored energy in the condenser. This energy affected the buoyancy forces and generated flow pulsation that caused a harmonic-like variation of the system efficiency. This effect vanished with forced water circulation flow. The system efficiency varied between 20 and 50% depending on the solar insolation.  相似文献   

13.
Solar heat pump drying and water heating in the tropics   总被引:1,自引:0,他引:1  
In this study, the performance of a solar assisted heat pump dryer and water heater has been investigated. A simulation program has been developed. The predicted results are compared with those obtained from experiments under the meteorological conditions of Singapore. A coefficient of performance (COP) value of 7.0 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.7 have been found for evaporator–collector and air collector, respectively. A value of the specific moisture extraction rate (SMER) of 0.65 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm. Results suggest that the total drying time of the product decreases with the increase in drying potential. Drying potential is directly proportional to the air flow rate, drying air temperature and inversely proportional to the air relative humidity. Three important parameters that affect the system performance are solar radiation, compressor speed and the total load placed in the drying chamber. Both SMER and COP decrease with increase in compressor speed.  相似文献   

14.
This paper describes the characteristics of horizontal mantle heat exchangers for application in thermosyphon solar water heaters. A new correlation for heat transfer in horizontal mantle heat exchangers with bottom entry and exit ports was used to predict the overall heat transfer and stratification conditions in horizontal tanks with mantle heat exchangers. The model of a mantle heat exchanger tank was combined with the thermosyphon solar collector loop model in TRNSYS to develop a model of a thermosyphon solar water heater with collector loop heat exchanger. Predictions of stratification conditions in a horizontal mantle tank are compared with transient charging tests in a laboratory test rig. Predictions of daily energy gain in solar preheaters and in systems with in-tank auxiliary boosters are compared with extensive outdoor measurements and the model is found to give reliable results for both daily and long-term performance analysis.  相似文献   

15.
Performance of combined solar-heat pump systems   总被引:1,自引:0,他引:1  
A comparative study of the performance of combined solar heat pump systems for residential space and domestic hot water heating has been undertaken. Simulations have been made with TRNSYS[1] of three basic combined configurations, as well as conventional solar and conventional heat pump systems, in two different climates, Madison, Wisconsin, and Albuquerque, New Mexico.The three combined systems are the series system in which the solar storage is used as the source for the heat pump, the parallel system in which ambient air is used as the source for the heat pump, and the dual source system in which the storage or ambient is used as the source depending on which source yields the lowest work input. The influence of collector area, number of glazings, main storage volume to collector area ratio, and heat pump coefficient of performance were determined.The results indicate that the parallel combined system is probably the most practical solar-heat pump configuration. The thermal performance at a given collector area is consistently superior to both the series or the dual source systems over the heating season. Costs and the extent to which summer cooling is a requirement determine the relative merit of the conventional heat pump, conventional heat pump, conventional solar, and parallel systems.  相似文献   

16.
This paper presents a theoretical analysis along with the experimental validation study of a solar air heater of the second kind. The heater consists of a flat passage between two metallic plates through which the heat transfer fluid air is made to pass by some auxiliary means. Study of the periodic response of different parameters of this solar air heater is attempted. The heat balance equations governing the behaviour of the system are solved explicitly. The results obtained from the analytical expressions for the transient variation of outlet air temperature compare well with experimental data. Predictions are also made regarding effects of different performance parameters of the air heater with variations of air mass flow rate and plate emissivity with the hope of optimizing the collector configuration.  相似文献   

17.
This investigation is concerned with the design and performance of a flat-type solar air heater in which air flows perpendicularly from the transparent cover to a porous absorber plate. The design phase involved a stability analysis to determine the critical distance (maximum allowable distance) between the absober and transparent cover, for suppressing convection currents, at various environmental and operating conditions. These results are useful to designers of solar collectors of the proposed type. In addition, the thermal performance of this solar heater at its optimum design conditions was computed for a wide range of system parameters illustrating the contribution of conduction and radiative modes of heat transfer. The results indicate that the best operating efficiency can be obtained when running the collector with a mass flow rate of m > 40 kg/m2.h. Furthermore, the collector thermal performance is superior than channel type solar air heaters operating under similar conditions and much simpler than honeycomb porous bed solar air heaters.  相似文献   

18.
The sheet-and-tube solar water heater is a convenient and common heater to be used as domestic hot water heating. This paper investigates the effects on collector efficiency of a double-pass sheet-and-tube solar water heater with fins attached under various arrayed density. In addition, the number of pair ducts and total mass flow rate are taken into account during the calculation procedure. The theoretical prediction shows that the higher collector efficiency is obtained under the suitable designing and operating parameters. Considerable improvement in collector performance is obtained by employing a recyclic operation with fins attached and under various arrayed density, instead of employing a single-pass flat-plate device. The effect of the recycle ratio, arrayed density and number of fins attached on the collector efficiency enhancement as well as the power consumption increment has also delineated.  相似文献   

19.
太阳能热管的研制和应用   总被引:1,自引:0,他引:1  
介绍了太阳能热管发展的社会背景和历史沿革、太阳能热管单管的工质选择和管壳结构、热管式真空集热管的结构特点及太阳能热管在热水器中的应用  相似文献   

20.
A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m2, the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号