首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the Vickers hardness and fracture toughness of an Al2O3(n) + 70 wt% ZrO2 (TZ‐3Y)n nanocomposite with addition of 2.5 wt% Al2O3 whiskers. Densities greater than 95% were reached after conventional sintering at 1500°C. The fracture toughness was increased 62% over pure Al2O3. Microcracking and crack deflection can be the mechanisms responsible to improve the fracture toughness. The use of ATZ composites with a low percent of whiskers can be a promising biomedical material for medical and dental applications given its large increase in fracture toughness over pure alumina and the observed relief from aging issues of zirconia.  相似文献   

2.
The wear and friction properties of poly (ether‐ether‐ketone) (PEEK) reinforced with 0–33 vol % (60 wt %) micron size Al2O3 composites were evaluated at a sliding speed of 1.0 m/s and nominal pressure from 0.5 to 1.25 MPa under dry sliding conditions using a pin‐on‐disk wear tester. The wear resistance of the pure PEEK is 10‐fold higher than that of mild steel under the similar test condition. It is improved to 18‐fold as compared with mild steel at 3.5 vol % Al2O3 content. The improvement in wear properties may be attributed to the thin, tenacious, and coherent transfer film formed between the steel countersurface and composite pin. However, the wear resistance of PEEK containing above 3.5 vol % Al2O3 was deteriorated, despite their higher hardness and stiffness as compared with that of composites containing lower Al2O3 content. This is attributed to the formation of thick and noncoherent transfer film, which does not prevent the wear of the composites from hard asperities of countersurface. Moreover, hard Al2O3 particles present in transfer film act as third body wear mechanism. The coefficient of friction of the composites is higher than that of pure PEEK. SEM and optical microscopy have shown that wear of pure PEEK occurs by the mechanism of adhesion mainly whereas of PEEK composites by microploughing and abrasion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Al2O3/Lu3Al5O12 (LuAG) directionally solidified eutectic (DSE) ceramics with two solidification rates were prepared utilizing optical floating zone (OFZ) technique. The microstructures (eutectic morphology, preferred growth direction and interface orientation) of Al2O3/LuAG were characterized, and the mechanical properties (Vickers hardness and fracture toughness) were compared with those of Al2O3/REAG (RE = Y, Er, and Yb). Results show that Al2O3/LuAG with solidification rate of 30 mm/h has established preferred growth direction in both Al2O3 and LuAG phases with cellular eutectic structures. While Al2O3/LuAG with solidification rate of 10 mm/h only shows preferred growth direction in Al2O3 phase and presents degenerate irregular eutectic microstructures. Besides, Al2O3/LuAG exhibits higher hardness compared with Al2O3/REAG (RE = Y, Er, and Yb). In addition, a special attention is focused on the relations among rare earth ionic radius, eutectic microstructures, and mechanical properties of these DSE ceramics. It is demonstrated that a smaller rare earth ionic radius could lead to larger eutectic interspacing as well as higher Vickers hardness of DSE Al2O3/REAG, revealing the possibility and feasibility of microstructure control and mechanical properties optimization for DSE Al2O3/REAG ceramics by tailoring the rare earth elements.  相似文献   

4.
Revealing and understanding the microscopic origins of the macroscopic properties of aluminosilicate glasses is important for the design of new glasses with optimized properties. In this work, we study the composition‐structure‐property relationships in 20 MgO/CaO sodium aluminosilicate glasses upon Al2O3‐for‐SiO2 and MgO‐for‐CaO substitutions. We find that some properties (density, molar volume, Young's modulus, and shear modulus) are linear through the investigated range of Al2O3 compositions, while others (refractive index, coefficient of thermal expansion, Vickers hardness, isokom temperatures, and liquid fragility index) exhibit a change in the slope around the composition with [Al2O3] = [Na2O], which is especially pronounced for the glasses containing MgO. We discuss these phenomena based on structural information obtained by NMR spectroscopy and topological considerations.  相似文献   

5.
《Ceramics International》2019,45(13):16504-16511
The aim of this study was to improve the mechanical properties of Al2O3 ceramics by the addition of Y2O3-stabilized ZrO2 whiskers (designated as Al2O3/YSZW composite) through the flux method and hot-pressing technology. The effect of YSZW content on their microstructure, phase composition and transformability, mechanical properties, and wear resistance was systematically investigated. The Al2O3/YSZW composites containing 10 wt% YSZW exhibited the best mechanical performance, including the highest content of YSZW tetragonal phase and transformability as well as the largest values in their relative density (99.5%), hardness (1969 HV), fracture toughness (9.57 MPa m1/2) and flexural strength (855 MPa). The strengthening and toughening of the Al2O3/YSZW composites were attributed to the YSZW tetragonal-monoclinic phase transformation as well as the whiskers reinforcing effect. Furthermore, the Al2O3/YSZW composites also showed the highest friction and wearing properties.  相似文献   

6.
A polymer‐based thermal conductive composite has been developed. It is based on a dispersion of micro‐ and nanosized alumina (Al2O3) in the phthalonitrile‐terminated poly (arylene ether nitriles) (PEN‐t‐ph) via solution casting method. The Al2O3 with different particle sizes were functionalized with phthalocyanine (Pc) which was used as coupling agent to improve the compatibility of Al2O3 and PEN‐t‐ph matrix. The content of microsized functionalized Al2O3 (m‐f‐Al2O3) maintained at 30 wt % to form the main thermally conductive path in the composites, and the nanosized functionalized Al2O3 (n‐f‐Al2O3) act as connection role to provide additional channels for the heat flow. The thermal conductivity of the f‐Al2O3/PEN‐t‐ph composites were investigated as a function of n‐f‐Al2O3 loading. Also, a remarkable improvement of the thermal conductivity from 0.206 to 0.467 W/mK was achieved at 30 wt % n‐f‐Al2O3 loading, which is nearly 2.7‐fold higher than that of pure PEN‐t‐ph polymer. Furthermore, the mechanical testing reveals that the tensile strength increased from 99 MPa for pure PEN‐t‐ph to 105 MPa for composites with 30 wt % m‐f‐Al2O3 filler loading. In addition, the PEN‐t‐ph composites possess excellent thermal properties with glass transition temperature (Tg) above 184°C, and initial degradation temperature (Tid) over 490°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41595.  相似文献   

7.
The grain growth kinetics and mechanical properties of graphene platelets(GPLs) reinforced ZrO2/Al2O3(ZTA) composites prepared by microwave sintering were investigated. The calculated grain growth kinetics exponent n indicated that the GPLs could accelerate the process of the Al2O3 columnar crystal growth. And the grain growth activation energy of the Al2O3 columnar crystal indicated that the grain growth activation energy of the GPLs doped ZTA composites is much higher than those of pure Al2O3 and ZTA in microwave sintering. The optimal mechanical properties were achieved with 0.4?vol% GPLs, whose relative density, Vickers hardness and fracture toughness were 98.76%, 18.10?GPa and 8.86?MPa?m1/2, respectively. The toughening mechanisms were crack deflection, bridging, branching and pull-out of GPLs. The results suggested that GPLs-doped are good for the Al2O3 columnar crystal growth in the ZTA ceramic and have a potentially improvement for the fracture toughness of the ceramics.  相似文献   

8.
The Vickers hardness of dense Al2O3-cubic BN (cBN) composites prepared by spark plasma sintering under a moderate pressure of 100 MPa at 1200-1600 °C was investigated at indentation loads of 0.098-19.6 N. The BN grains in the Al2O3-BN composite prepared at 1300 °C showed no transformation from the cBN to hBN phase, and the hardness was 59 GPa at 0.098 N. The hardness of the Al2O3 matrix in the Al2O3-BN composites containing 10-30 vol% cBN prepared at 1300-1400 °C was around 25 GPa at 0.098 N, which was higher than monolithic Al2O3 bodies prepared at the same temperatures. The hardness of the Al2O3 matrix in the Al2O3-BN composites decreased with increasing sintering temperature. The increase in the hardness of the Al2O3 matrix may be due to the decrease in the size of Al2O3 grains in the Al2O3-BN composites owing to the addition of cBN particles and the decrease in sintering temperature. The Meyer exponents of the monolithic Al2O3 bodies and Al2O3-BN composites were 1.90-1.94 independent of cBN content.  相似文献   

9.
A sol–gel process has been developed to prepare polyimide (PI)/Al2O3 hybrid films with different contents of Al2O3 based on pyromellitic dianhydride (PMDA) and 4,4′‐oxydianiline (ODA) as monomers. FESEM and TEM images indicated that Al2O3 particles are relatively well dispersed in the polyimide matrix after ultrasonic treatment of the sol from aluminum isopropoxide and thermal imidization of the gel film. The dimensional stability, thermal stability, mechanical properties of hybrid PI films were improved obviously by an addition of adequate Al2O3 content, whereas, dielectric property and the elongation at break decreased with the increase of Al2O3 content. Surprisingly, the corona‐resistance property of hybrid film was improved greatly with increasing Al2O3 content within certain range as compared with pure PI film. Especially, the hybrid film with 15 wt % of Al2O3 content exhibited obviously enhanced corona‐resistance property, which was explained by the formation of compact Al2O3 network in hybrid film. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The electronic (band) structure of polycrystalline Al2O3, in particular the density of near‐band edge grain‐boundary localized states, plays a significant role in a host of high‐temperature phenomena, including sintering, high‐temperature creep, oxygen permeability in dense “dry” Al2O3 ceramics, and Al2O3 scale formation on Al2O3 scale‐forming alloys. All these phenomena involve creation or annihilation of charged point defects (vacancies and/or interstitials) at grain boundaries and interfaces, and must of necessity involve electrons and holes. Thus, the density of states associated with grain boundaries in Al2O3 assume great importance, and has been calculated using DFT for both nominally undoped and Y‐doped Σ7 bi‐crystal boundaries. These quantum mechanical calculations must be taken into account when considering why Y2O3 segregation to Al2O3 grain boundaries is so effective in enhancing high‐temperature creep resistance of polycrystalline Al2O3, and in understanding the reactive element effect in Al2O3 scale‐forming alloys. Finally, a case will be made that grain‐boundary diffusion is mediated by the migration of a class of grain‐boundary ledge defects called disconnections, which are characterized by a step height h and a Burgers vector b.  相似文献   

11.
《Ceramics International》2020,46(8):12145-12155
Alumina-coated cubic boron nitride (c-BN) particles (c-BN@Al2O3) were prepared using a heterogeneous nucleation method. Then, they were added to a (Ti,W)C-based cermet tool material after synthesis via vacuum hot-press sintering. The microstructure and mechanical properties of the (Ti,W)C-based cermet tool material with varying c-BN@Al2O3 contents were recorded and analyzed. The results show that with increasing c-BN@Al2O3 concentration, the relative density, flexural strength, fracture toughness, and Vickers hardness all increase first and then decrease, and the average grain size first decreases and then increases. The introduction of Al2O3 into the c-BN particles used for surface modification can improve the wettability and interfacial bonding strength between the c-BN and matrix particles, restrain the grain growth of the matrix particles, and improve the flexural strength of cermet tool materials. The addition of c-BN@Al2O3 also alters the crack propagation mechanism of the cermet tool material and introduces multiple toughening mechanisms to improve the fracture toughness of the cermet tool material. The high hardness of c-BN and Al2O3 is the main reason for the increase in hardness; however, excessive addition of such material reduces the relative density, resulting in a decrease in hardness.  相似文献   

12.
Zero thermal expansion phases from the A2M3O12 and related thermomiotic (negative thermal expansion) families are natural candidates for applications where high thermal shock resistance is the principal requirement. However, their mechanical properties are largely unknown, as are sintering routes for consolidation into bulk objects. Therefore, a preliminary case study on the effect of microstructure on mechanical strength and thermal shock resistance of Al2W3O12 has been performed. All thermal and mechanical properties necessary for calculation of thermal shock resistance figures of merit have been measured experimentally. Tensile strengths were measured by four‐point flexural test and analyzed by the Weibull method. The microstructure of bulk specimens, conventionally pressureless sintered at 1273 K, was coarse‐grained, containing microcracks, and inhomogeneous with respect to density due to the agglomeration of nanoparticles, and led to low tensile strength. Despite this, thermal shock resistance features evaluated for Al2W3O12 are encouraging. The Hasselman figure of merit for thermal shock resistance for severe heating conditions of Al2W3O12 was 120 K, comparable to sapphire, the state‐of‐the‐art material for some advanced thermal shock resistance applications. This study shows that zero thermal expansion phases from the A2M3O12 family have potential to be transformed into useful engineering ceramics for thermal shock resistance applications.  相似文献   

13.
WC-40 vol.%Al2O3 composites were prepared by high energy ball milling followed by hot pressing. The tungsten carbide (WC) and commercial alumina (Al2O3) powders composed of amorphous Al2O3, boehmite (AlOOH) and χ-Al2O3 were used as the starting materials. The phase transformation during sintering, the influence of sintering temperature and holding time on the densification, microstructure, Vickers hardness and fracture toughness and the toughening effects of WC-40 vol.%Al2O3 composites were investigated. The results showed that the amorphous Al2O3, AlOOH and χ-Al2O3 were transformed to α-Al2O3 completely during the sintering process. With the increasing sintering temperature and holding time, the relative density increased and both the Vickers hardness and fracture toughness increased initially to the maximum values and then decreased. When the as milled powders were hot pressed at 1540 °C for 90 min, a relative density of 97.98% and a maximum hardness of 18.65 GPa with an excellent fracture toughness of 10.43 MPa m1/2 of WC-40 vol.%Al2O3 composites were obtained.  相似文献   

14.
《Ceramics International》2023,49(8):12499-12507
MgO–Al2O3–SiO2 glass-ceramics have been widely used in military, industrial, and construction applications. The nucleating agent is one of the most important factors in the production of glass-ceramics as it can control the crystallization temperature or the grain size. In this study, we investigated the effect of replacing P2O5 with different amounts of TiO2 on the crystallization, structure, and mechanical properties of an MgO–Al2O3–SiO2 system. The crystallization and microstructure were investigated by differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The mechanical properties were investigated by measuring the Vickers hardness, Young's modulus, and fracture toughness. The results showed that adding TiO2 favored the precipitation of fine grains and significantly increased the Vickers hardness, Young's modulus, and fracture toughness of the glasses. Introducing an appropriate amount of TiO2 can make a glass structure more compact, promote crystallization, and improve the mechanical properties of MgO–Al2O3–SiO2 glass-ceramics.  相似文献   

15.
Using spark plasma sintering, Ti3AlC2/W composites were prepared at 1300°C. They contained “core‐shell” microstructures in which a TixW1?x “shell” surrounded a W “core”, in a Ti3AlC2 matrix. The composite hardness increased with W addition, and the hardening effect is likely achieved by the TixW1?x interfacial layer providing strong bonding between Ti3AlC2 and W, and by the presence of hard W. Microstructural development during high‐temperature oxidation of Ti3AlC2/W composites involves α‐Al2O3 and rutile (TiO2) formation ≥1000°C and Al2TiO5 formation at ~1400°C while tungsten oxides appear to have volatilized above 800°C. Likely due to exaggerated, secondary grain growth of TiO2‐doped alumina and the effect of W addition, fine (<1 μm) Al2O3 grains formed dense, anisomorphic laths on Ti3AlC2/5 wt%W surfaces ≥1200°C and coarsened to large (>5 μm), dense, TiO2‐doped Al2O3 clusters on Ti3AlC2/10 wt%W surfaces ≥1400°C. W potentially affects the oxidation behavior of Ti3AlC2/W composites beneficially by causing formation of TixW1?x thus altering the defect structure of Ti3AlC2, resulting in Al having a higher activity and by changing the scale morphology by forming dense Al2O3 laths in a thinner oxide coating, and detrimentally through release of volatile tungsten oxides generating cavities in the oxide scale. For Ti3AlC2/5 wt%W oxidation, the former beneficial effects appear to dominate over the latter detrimental effect.  相似文献   

16.
To realize a high hardness in transparent MgAl2O4, the MgAl2O4/Al2O3 laminated composite was fabricated by a one-step spark-plasma-sintering (SPS) method. By sintering at a temperature of 1225 °C for 10 min and at a heating rate of ≤ 10 °C/min under a pressure of 300 MPa, the MgAl2O4/Al2O3 laminated composites can attain a high hardness with maintaining the wide band transparency. The in-line and IR transmission were ~50 % at the visible wavelength of 500 nm and >77 % at the wavelength of 4 μm, respectively. The Vickers hardness measured on the surface of the Al2O3 layer perpendicular to the MgAl2O4/Al2O3 stacking exhibited 29 GPa, which is higher than those of the monolithic Al2O3 (26.6 GPa) and MgAl2O4 (17.2 GPa). The wide band transparency and mechanical properties can be realized by simultaneously attaining smaller grain sizes and higher densities of both the MgAl2O4 and Al2O3 phases in the laminated composite by optimizing the SPS conditions.  相似文献   

17.
A bubbling fluidized‐bed gasification system was selected for catalytic steam gasification of rice straw with four Ni‐based catalysts, i.e., Ni/Al2O3, Ni/CeO2, Ni/MnO2, and Ni/MgO. The effect of temperature, steam/biomass ratio (S/B), and catalyst/biomass ratio (C/B) on the gas composition, char conversion, and hydrogen yield was evaluated. It was found that higher temperature and S/B promote hydrogen production and char conversion. The results also demonstrated that the catalytic activity of Ni/Al2O3 under different S/B values is better than those of the other catalysts. Regarding the catalyst activity, all four catalysts exhibited good performance in terms of tar removal and carbon conversion. However, the performance of Ni/Al2O3 was superior to that of the other three catalysts.  相似文献   

18.
In this study, Al2O3-based ceramics were fabricated with natural bauxite powder as the raw material. The phase compositions evolution behavior during the heat treatment and its influence on the properties of fabricated ceramics were investigated. With increasing heat treatment temperature, the sintering degree of high-titania special-grade bauxite became better. The samples showed decreased porosity, increased bulk density, Vickers hardness, fracture toughness and flexural strength. However, when the heat temperature increased to 1650 °C, decomposition of tieillite occurs in sample, leading to increased Al2O3 and TiO2 content in the liquid phase. Corundum and mullite grains with anisotropic growth appeared in the samples, leading to a decrease in the density, the Vickers hardness and flexural strength of samples decreased consequently. However, those anisotropic grains could prolong the crack propagation path and improve the fracture toughness of the material.  相似文献   

19.
It has been shown earlier that formation of undesirable W2C phase during mechanochemical synthesis of WC–Al2O3 composites from WO3–Al–C mixture is due to high temperatures caused by the large heat release during the initial aluminothermic reduction of WO3. With the aim of preventing the formation of W2C, in this study, Al2O3 was added to lower the reaction temperature. Thermodynamic calculations showed that Al2O3 presence in WO3/2Al/C/xAl2O3 mixtures would lower the adiabatic temperature. Experimental findings revealed that with no Al2O3 addition, released heat in the mixture activates carbothermic reduction of WO3 and causes carbon deficiency, which results in W2C formation. When x?=?0·6, although product consists of W2C phase, the coolant effect of alumina diminishes carbon deficiency phenomenon with a consequence of more WC formation. For the WO3/2Al/C/1·2Al2O3 mixture, carbothermic reduction reaction was prevented, which brings about complete conversion of W to WC after milling. The TEM observations showed that the produced WC–Al2O3 powder contains nanosize particles.  相似文献   

20.
A new lead‐free BNT‐based piezoelectric ceramics of (1 ? x)Bi0.5Na0.5TiO3xBi(Al0.5Ga0.5)O3 (x = 0, 0.02, 0.03, 0.04, and 0.05) were synthesized using a conventional ceramic fabrication method. Their structures and electrical properties were investigated. All the samples show a typical ferroelectric P(E) loops and S(E) curves at room temperature. The optimal properties are obtained at the composition of the x = 0.03. The substitution of Bi(Al0.5Ga0.5)O3 enhances piezoelectric constant and increases Curie temperature from 58 pC/N and 310°C of pure BNT to 93 pC/N and 325°C of the x = 0.03. The temperature‐dependent P(E) loops and S(E) curves of 0.97BNT–0.03BAG indicate that phase transition from ferroelectric to antiferroelectric takes place over a very wide temperature region from 80°C to 180°C. The results show that the introduction of BAG improves the electrical properties of BNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号