首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new design concept for a high flux reactor was investigated, where a graphite moderated helium-cooled reactor with pebble fuel elements containing (235U, 238U)O2 TRISO coated particles was taken as its design base. The reactor consists of an annular pebble bed core, a central heavy water region, and inner, outer, top, and bottom graphite reflectors. The maximum thermal neutron flux in its central heavy water region as high as 1015 cm−2 s−1 with thermal neutron spectral purity of more than two orders of magnitude and a large usable volume of more than 1,000 liters can be achieved by (1) diluting the fissile material in the core and (2) optimizing the core-reflector configuration. The in-core thermal-hydraulic analysis was done to obtain adequate information about the coolant flow pattern and pressure distribution, core temperature profile, as well as other safety aspects of the design. To protect the reactor during off-normal or accident events, a large margin of temperature difference between the operating fuel temperature and the fuel limit temperature is confirmed by lowering the coolant inlet and core rise temperatures.  相似文献   

2.
A probabilistic safety assessment (PSA) is being developed for a steam-methane reforming hydrogen production plant linked to a high-temperature gas-cooled nuclear reactor (HTGR). This work is based on the Japan Atomic Energy Research Institute's (JAERI) High Temperature Engineering Test Reactor (HTTR) prototype in Japan. The objective of this paper is to show how the PSA can be used for improving the design of the coupled plants. A simplified HAZOP study was performed to identify initiating events, based on existing studies. The results of the PSA show that the average frequency of an accident at this complex that could affect the population is 7 × 10−8 year−1 which is divided into the various end states. The dominant sequences are those that result in a methane explosion and occur with a frequency of 6.5 × 10−8 year−1, while the other sequences are much less frequent. The health risk presents itself if there are people in the vicinity who could be affected by the explosion. This analysis also demonstrates that an accident in one of the plants has little effect on the other. This is true given the design base distance between the plants, the fact that the reactor is underground, as well as other safety characteristics of the HTGR.  相似文献   

3.
以非能动压水堆核电厂为研究对象,对可能引起乏燃料损伤的内部事件进行了风险评价。采用PSA软件RiskSpectrum建立事件树和故障树模型,进行乏燃料损伤频率(FDF)定量化。结果表明:在所有工况下总的FDF为2.05×10-9/(堆•年),远小于堆芯的损伤频率(约2.41×10-7/(堆•年));即使在放射性完全释放的假设下,乏燃料损伤导致的大量放射性释放频率仍较堆芯损伤导致的大量放射性释放频率(约2.38×10-8/(堆•年))低1个量级;由于非能动压水堆核电厂有多重预防缓解措施以应对乏燃料池(SFP)事故,SFP风险远低于堆芯风险,可实现核安全导则的安全目标。  相似文献   

4.
In the present work, power up-grading study is performed, for the first Egyptian Research Reactor (ET-RR-1), using the present fuel basket with 4×4 fuel rods, (17.5 mm pitch), and a proposed fuel basket with 5×5 fuel rods, (14.0 mm pitch), without violating the thermal hydraulic safety criteria. These safety criteria are; fuel centerline temperature (fuel melting), clad surface temperature (surface boiling), outlet coolant temperature, and maximum heat flux (critical heat flux ratio). Different thermal reactor powers (2–10 MW) and different core coolant flow rates (450, 900, 1350 m3 h−1) are considered. The thermal hydraulic analysis was performed using the subchannel code COBRA-IIIC for the estimation of temperatures, coolant velocities and critical heat flux. The neutronic calculations were performed using WIMS-D4 code with 5 — group neutron cross section library. These cross sections were adapted to use in the two-dimensional (2-D) diffusion code DIXY for core calculations. The study concluded that ET-RR-1 power can be upgraded safely up to 4 MW with the present 4×4-fuel basket and with the proposed 5×5-fuel basket up to 5 MW with the present coolant flow rate (900 m3 h−1). With the two fuel arrays, the reactor power can be upgraded to 6 MW with coolant flow rate of 1350 m3 h−1 without violating the safety criterion. It is also concluded that, loading the ET-RR-1 core with the proposed fuel basket (5×5) increases the excess reactivity of the reactor core than the present 4×4 fuel matrix with equal U-235 mass load and gave better fuel economy of fuel utilization.  相似文献   

5.
The He–Xe gas-cooled, S4 reactor has a sectored, Mo–14%Re solid core for avoidance of single point failures in reactor cooling and Closed Brayton Cycle (CBC) energy conversion. The reactor core is loaded with UN fuel and each of its three sectors is thermal-hydraulically coupled to a separate CBC loop and radiator panels. The solid core minimizes voids, and the BeO reflectors are designed to easily disassemble upon impact, ensuring that the bare S4 reactor is sufficiently subcriticial when submerged in wet sand or seawater and flooded with seawater, following a launch abort accident. Spectral shift absorber (SSA) additives in the core and thin SSA coatings on the outer surface of the core can also be used to ensure subcriticality in such an accident. This paper investigates the effects of various SSAs (Re, Ir, Eu-151, B-10 and Gd-155) on the temperature and burnup reactivity coefficients and the operating lifetime of the S4 reactor at a steady thermal power of 550 kW. The calculations of the burnup, reactivity feedback coefficient used a mixture of the top 10 light and top 10 heavy fission products plus Sm-149 and are performed for isothermal reactor core and reflector temperatures of 1200 and 900 K. In this fast spectrum space reactor, SSAs markedly increase fuel enrichment and decrease the burnup reactivity coefficient, but only slightly decrease the temperature, reactivity feedback coefficient. With no SSAs, the UN fuel enrichment is lowest (58.5 wt.%), the temperature and burnup reactivity coefficients are the highest (−0.2709 ¢/K and −1.3470 $/at.%), and the estimated operating lifetime is the shortest (7.6 years). The temperature and burnup reactivity coefficients decrease to −0.2649 ¢/K and −1.0230 $/at.%, and the operating lifetime increases to 8.3 years when rhenium additives are used. With europium-151 and gadolinium-155 additions, fuel enrichment (91.5 and 94 wt.%) and operating lifetime (9.9 and 9.8 years) are the highest and both the temperature reactivity feedback coefficient (−0.2382 and −0.2447 ¢/K) and the burnup reactivity coefficient (−0.9073 and −0.8502 $/at.%) are the lowest.  相似文献   

6.
Specific requirements of district heating lead to a simple and safe reactor design with small absolute power, low temperatures and pressures, and modest load following behaviour. Plant safety is essentially guaranteed by inherent features. Shutdown is assured by gravity drop of the control rods, decay heat is removed from the core by means of natural circulation via dedicated intermediate circuits to external aircoolers.The accident analysis and probabilistic assessment attest the heating reactor a well balanced safety concept and a probability for Accident Management (AM) measures for all conceivable events less than 10−7 a−1. Provisions for AM measures for decay heat removal, water supply into primary system and electrical power supply can be achieved using existing systems and components. The possibilities are manifold and can be repeated independent from each other at any time. Therefore large grace periods are available and can be extended by above mentioned measures thus it is justified to state that core melting can be precluded.  相似文献   

7.
A comprehensive study has been completed in relation to the accident analysis of RBMK with key results documented in three companion papers in the present journal volume. The study also aimed at the comparison between selected accident analysis topics in Light Water Reactors (LWR) and RBMK. The relevance of the Fuel Channel Blockage (FCB) event within the area of accident analysis was confirmed. Owing to the probability of occurrence, also connected with the large number of channels, estimated in the order of 10−2/reactor/year, the FCB is actually part of the Design Basis Accidents (DBA) for the RBMK.In case the FCB is part of the DBA, a noticeable difference occurs in results from safety evaluations between LWR and RBMK: in the latter case, a DBA causes a loss of integrity for the pressure barrier and, though to a limited extent, damaged fuel overpasses such a barrier. The FCB event also causes contamination in reactor cavity and in selected parts of the overall confinement, damage in various graphite blocks and, even excluding the MPTR risk owing to the findings from the second companion paper in this journal volume, mechanical loads on neighbouring fuel channels, graphite stacks and reactor tank that need extensive examination before reactor restart.Therefore, a proposal has been formulated for performing the feasibility analysis for the design of a system denominated ICM (Individual Channel Monitoring). The goal of the ICM is the early detection of the FCB event and the triggering of scram in such a way to prevent pressure tube damage and, definitely, over-passing of the pressure barrier by molten or damaged fuel during a DBA situation.The ICM is based upon the signals of pressure-drop (or flow-rate) and fluid temperature transducers installed in the bottom and the upper parts of the fuel channels, respectively. The performed study shows that steam superheating at fuel channel outlet occurs early after the blockage event and the related temperature signal can be used to cause scram. The availability of sophisticate computational tools including the detailed neutron kinetic model for each core channel, made possible the preliminary conclusion of the study.  相似文献   

8.
Station blackout is reported to be a sequence that would likely be a significant contributor to the accident risk at a boiling water reactor (BWR). The occurrence frequency of station blackout is evaluated in probabilistic safety assessment (PSA) to be 6×10?6 per reactor year at Limerick and less than 10?7 per reactor year at BWR in Japan.

This report describes an analytical study of thermal-hydraulic and radionuclide behavior during a postulated severe accident of station blackout at a reference BWR plant. The analytical approach was shown in both of hand calculation and the THALES/ART code calculation to better understand wide physical and chemical phenomena in the processes of severe accidents.

We evaluated timing of key events, core cooling and core temperature, reactor vessel failure, debris temperature, containment pressure, and release and deposition of radionuclide in the containment. The THALES and CORCON models on the chemical reactions in the core-concrete interaction lead to great differences in the increasing rate of containment pressure and the release rate of fission products from the core debris.  相似文献   

9.
The mode of fuel management of the HTR-10 was studied, including the simulation of the fuel shuffling process and the measurement of the burnup of a fuel element. The prior consideration was the design of the equilibrium state. Based on this the fuel loading of the initial core and the fuel shuffling mode from the initial core through the running-in phase into the equilibrium state were studied. The code system VSOP was used for the physical layout of the HTR-10 at the equilibrium state and in the running-in phase. For the equilibrium state, in order to lessen the difference between the peak and the average burnup, 5-fuel-passage-through-the-core was chosen for the fuel management. The average burnup of the spent fuel for the equilibrium core is 80 000 MWd t−1, and the peak value of it is less than 100 000 MWd t−1 when the burnup of the recycled fuel element is under 72 000 MWd t−1. The mixture of fuel element and graphite element was used for the initial core loading, the volume fractions of the fuel and the graphite elements were 0.57 and 0.43, respectively. During the running-in phase, the volume fraction of graphite will decrease with the fresh fuel elements being loaded from the top of the core and the graphite elements discharged from the bottom of the core. The fuel shuffling mode is similar to that of the equilibrium state. The burnup limit of recycled fuel element is also 72 000 MWd t−1 and the peak burnup is less than 100 000 MWd t−1. Finally the core will be full of fuel elements with a certain profile of burnup and reaches the equilibrium state. According to the characteristics of the pebble-bed high temperature gas-cooled reactor, a calibrating method of concentration of 137Cs was proposed for the measurement of fuel burnup.  相似文献   

10.
Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality—both super-prompt power bursts and quasi steady-state power generation—for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45–2000 kg s−1 injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g−1, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s−1. In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated quasi steady-state power following initial power excursion was in most cases approximately 20% of the nominal reactor power, according to SIMULATE-3K and APROS. However, in some RECRIT cases higher power levels, approaching 50% of the nominal power, were predicted leading to fuel temperatures exceeding the melting point, as a result of insufficient cooling of the fuel. Long-term containment response to recriticality was assessed through MELCOR calculations for the Olkiluoto 1 plant. At a stabilised reactor power of 19% of nominal power, the containment failure due to overpressurisation was predicted to occur 1.3 h after recriticality, if the accident is not mitigated. The SARA studies have clearly shown the sensitivity of recriticality phenomena to thermal-hydraulic modelling, the specifics of accident scenario, such as distribution of boron-carbide, and importance of multi-dimensional kinetics for determination of local power distribution in the core. The results of the project have pointed out the importance of adequate accident management strategies to be used by reactor operators and emergency staff during recovery actions. Recommendations in this area are given in the paper.  相似文献   

11.
India has chalked out a nuclear power program based on its domestic resource position of uranium and thorium. The first stage started with setting up the Pressurized Heavy Water Reactors (PHWR) based on natural uranium and pressure tube technology. In the second phase, the fissile material base will be multiplied in Fast Breeder Reactors using the plutonium obtained from the PHWRs. Considering the large thorium reserves in India, the future nuclear power program will be based on thorium–233U fuel cycle. However, there is a need for the timely development of thorium-based technologies for the entire fuel cycle. The Advanced Heavy Water Reactor (AHWR) has been designed to fulfill this need. The AHWR is a 300 MWe, vertical, pressure tube type, heavy water moderated, boiling light water cooled natural circulation reactor. The fuel consists of (Th–Pu)O2 and (Th–233U)O2 pins. The fuel cluster is designed to generate maximum energy out of 233U, which is bred in situ from thorium and has a slightly negative void coefficient of reactivity. For the AHWR, the well-proven pressure tube technology has been adopted and many passive safety features, consistent with the international trend, have been incorporated. A distinguishing feature which makes this reactor unique, from other conventional nuclear power reactors is the fact that it is designed to remove core heat by natural circulation, under normal operating conditions, eliminating the need of pumps. In addition to this passive feature, several innovative passive safety systems have been incorporated in the design, for decay heat removal under shut down condition and mitigation of postulated accident conditions. The design of the reactor has progressively undergone modifications and improvements based on the feedbacks from the analytical and the experimental R&D. This paper gives the details of the current design of the AHWR.  相似文献   

12.
Reactor core design of Gas Turbine High Temperature Reactor 300   总被引:2,自引:0,他引:2  
Japan Atomic Energy Research Institute (JAERI) has been designing Japan’s original gas turbine high temperature reactor, Gas Turbine High Temperature Reactor 300 (GTHTR300). The greatly simplified design based on salient features of the High Temperature Gas-cooled Reactor (HTGR) with a closed helium gas turbine enables the GTHTR300 a highly efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the High Temperature Engineering Test Reactor (HTTR) and existing fossil fired gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original design features of this system are the reactor core design based on a newly proposed refueling scheme named sandwich shuffling, conventional steel material usage for a reactor pressure vessel (RPV), an innovative coolant flow scheme and a horizontally installed gas turbine unit. The GTHTR300 can be continuously operated without the refueling for 2 years. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200,000 yen (1667 US$)/kW e, and the electric generation cost is close to a target cost of 4 yen (3.3 US cents)/kW h.

This paper describes the original design features focusing on the reactor core design and the in-core structure design, including the innovative coolant flow scheme for cooling the RPV. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   


13.
Water ingress accidents contribute significantly to the overall very low risk of a small HTR, as small-effort probabilistic safety analyses for the HTR-100 from HRB/BBC and for the HTR-Modul from IA/KWU have shown. The largest contribution is caused by an accident which results in a complete depressurization of the primary circuit via the leak of the steam generator and via the falsely open secondary side, the reason for which is different in both reactor concepts due to the different safety concepts. The frequency of these accidents were estimated to be in the order of 10−6 (HTR-Modul) to 10−7 (HTR-100) per reactor year. The main source for the release of metallic fission products is the surface contamination of the steam generator, of which a small part (Cs, Sr) or all (I) will be washed-off by water or steam. But the source term for iodine is determined by the accidental release from defective fuel particles. The release values are so low that the consequence model UFOMOD estimated no early and practically no late fatalities.  相似文献   

14.
The reactivity feedback coefficients of a material test research reactor fueled with high-density U3Si2 dispersion fuels were calculated. For this purpose, the low-density LEU fuel of an MTR was replaced with high-density U3Si2 LEU fuels currently being developed under the RERTR program. Calculations were carried out to find the fuel temperature reactivity coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the average values of fuel temperature reactivity feedback coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient from 20 °C to 100 °C, at the beginning of life, followed the relationships (in units of Δk/k × 10−5 K−1) −2.116 − 0.118 ρU, 0.713 − 37.309/ρU and −12.765 − 34.309/ρU, respectively for 4.0 ≤ ρU (g/cm3) ≤ 6.0.  相似文献   

15.
The R&D of spherical fuel elements for the 10 MW high temperature gas-cooled reactor (HTR-10) started in 1986 in China. A process known as cold quasi-isostatic molding was used for manufacturing spherical fuel elements, and about 20,540 spherical fuel elements were produced in 2000 and 2001. Fabrication technology and graphite matrix materials were investigated and optimized. Cold properties of the spherical fuel elements met the design specifications. The mean free uranium fraction of 44 batches was 4.57 × 10−5. In-pile irradiation test results showed that irradiation did not lead to apparent change in linear dimensional, geometrical density, porosity and strength of matrix graphite samples. No cracks and blisters were observed in spherical fuel elements. This indicated that matrix graphite and spherical fuel elements of HTR-10 met the requirement of design specifications.  相似文献   

16.
The evaluation and prognosis of reactor pressure vessel (RPV) material embrittlement in WWERs and the allowable period of their safe operation are performed on the basis of impact test results of irradiated surveillance specimens. The main problem concerns the irradiation conditions (irradiation temperature, neutron flux and neutron spectrum) of the surveillance specimens that have not been determined yet with the necessary accuracy. These conditions could differ from the actual RPV wall condition. In particular, the key issue is the possible difference between the irradiation temperature of the surveillance specimens and the actual RPV wall temperature. It is recognized that the direct measurement of the irradiation temperature by thermocouples during reactor operation is the only way to obtain reliable information. In addition, the neutron field's parameters in the surveillance specimens location have not been determined yet with the necessary accuracy. The use of state of the art dosimeters can provide high accuracy in the determination of the neutron exposure level.The COBRA project, which started in August 2000 and had a duration of 3 years, was designed to solve the above-mentioned problems. Surveillance capsules were manufactured which contained state of art dosimeters and temperature monitors (melting alloys). In addition, thermocouples were installed throughout the instrumentation channels of the vessel head to measure directly the irradiation temperature in the surveillance position during reactor operation. The selected reactor for the experiment was the Unit 3 of Kola NPP situated in the arctic area of Russia. Irradiation of capsules and online temperature measurements were performed during one fuel cycle. On the base of statistical processing of thermocouples readings, the temperature of irradiated surveillance specimens in WWER-440/213 reactor can be accepted as 269.5 ± 4 °C. Uncertainties were evaluated also with experimental work carried out in the WWRSZ research reactor and by finite element modelling of surveillance capsules. The results obtained show that there is not need to perform temperature correction when surveillance data of irradiated specimens are used for embrittlement assessment of WWER-440(213) reactor pressure vessels. Maximum neutron flux evaluated using detectors, which were placed in the Charpy specimen simulators, equals 2.7 × 1012 cm−2 s−1 with E > 0.5 MeV. It is established that depending on the orientation of the capsules with respect to the core, the detectors of the standard surveillance capsules can give both overestimated and underestimated neutron flux values, as compared to the actual flux received by the surveillance specimens. The overestimation or underestimation can reach 10%.  相似文献   

17.
Thin-walled WWR-M5 fuel elements were designed and manufactured and have been used successfully for 16 years; they contain twice as much uranium-235 as the WWR-M2 and WWR-M3 fuel elements. The fuel elements have been optimized with regard to their neutron physics and thermal-hydraulic parameters and fuel consumption has been minimized. The mean specific power in the core of the WWR-M reactor was raised to 230 kW l−1, the measured maximum volume thermal specific power was 900±100 kW l−1 and the surface specific power was 136±15 W cm−2. The WWR-M5 fuel elements enable the power of the WWR-M pooltype reactor to be raised to 30 MW while simultaneously increasing the number of cells in the core available for experimentation by a factor of approximately two and reducing fuel element consumption. Reactor tests of WWR-M fuel elements with reduced fuel enrichment (36 and 21%) were carried out for a meat uranium density up to 2–3 g cm−3. Conversion of WWR-SM-type reactors to these fuel elements did not lead to a loss in reactivity and enabled their power to be increased to 20–30 MW.  相似文献   

18.
A model for the release of fission gas from irradiated UO2 fuel is presented. It incorporates the relevant physical processes: fission gas diffusion, bubble and grain boundary movement, intergranular bubble formation and interlinkage. In addition, the model allows estimates of the extent of structural change and fuel swelling. In the latter, contributions of thermal expansion, densification, solid fission products, and gas bubbles are considered. When included in the ELESIM fuel performance code, the model yields predictions which are in good agreement with data from UO2 fuel elements irradiated over a range of water-cooled reactor conditions: linear power outputs between 40 and 120 kW m−1, burnups between 10 and 300 MW h(kg U)−1, and power histories including constant, high-to-low and low-to-high power periods.The predictions of the model are shown to be most sensitive to fuel power (temperature), the choice of diffusion coefficient for fission gas in UO2, and burnup. The predictions are less sensitive to variables such as fuel restraint, initial grain size and the rate of grain growth.  相似文献   

19.
In order to estimate the risk associated with Pressurized Thermal Shock (PTS), a sample calculation of the core melt frequency and offsite consequences has been performed for Oconee Unit 1, a Babcock and Wilcox pressurized water reactor located in the United States. Core melt frequency was derived from through-wall-crack frequency estimates based on thermal-hydraulic and fracture mechanics analyses performed by Oak Ridge National Laboratory and Pacific Northwest Laboratory. The mode and timing of containment response was estimated from previous risk studies for Oconee Unit 3 and other plants with large dry containments.The core melt frequency was calculated to be 6 × 10−6 per reactor year for operation at the PTS screening criterion. Operation of redundant and independent containment heat removal systems results in low probability of containment failure. The risk dominant scenario involves overpressure failure of containment due to failure of containment heat removal. Prompt containment failure was assigned a very low probability (10−4), and hydrogen burn failure was not considered.The central estimate of annual risk was 5 × 10−7 early fatalities, 2 × 10−4 latent cancer fatalities and 0.7 person-rem. These values are minimal compared with other severe accident scenarios.Uncertainties and sensitivies to important parameters are discussed. The response of other types of plants is briefly described.  相似文献   

20.
In this paper, it is shown that because of the public perception of the risk of nuclear power and the likelihood that in the event of a severe core damage accident in a reactor claimed to have a high degree of inherent safety, it is necessary to reconsider the basis for establishing safety objectives. It is shown that, if there were a large program of inherently safe reactors, the safety objectives would be determined more by investment risk than by the public health risk. These considerations lead to an objective on the order of 1 × 10−7 per r.yr (reactor year) for the probabability of a severe core damage accident. It is also shown that the introduction of inherently safe features leads to a considerable change in the allocation of the safety goal between the major safety functions. For these reactors, a major portion of the allocation shifts from the decay heat removal function to the scram function, with emphasis on insuring the integrity of critical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号