首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了满足机械强度要求,高速永磁电机通常采用径向磁通结构。随着非晶合金等新型超薄软磁材料的发展,高速高频轴向磁通永磁电机逐步引起关注。为此,针对一种适合于高速运行的磁极分段式轴向磁通永磁电机转子结构进行研究。建立了该转子结构强度解析计算模型,分别利用解析法和有限元法计算了不同极弧因数、转子轮缘宽度以及转子磁极分段数对转子机械强度的影响规律。同时研究了磁极分段式结构对轴向磁通永磁电机气隙磁密、空载反电动势、齿槽转矩和转矩密度等电磁性能的影响。结果证明采用磁极分段式结构能有效提高转子强度,相关研究工作为高速轴向磁通永磁电机的设计提供参考。  相似文献   

2.
针对表贴式永磁同步电机极频振动,提出一种分段交错不等磁极的削弱方法,与传统的优化方法相比,该方法可有效保证电机的转矩密度。首先,基于麦克斯韦张量法,推导作用于定子齿部的集中力模型,并以一台10极12槽表贴式永磁电机为例,分析极频电磁力谐波的产生原因。其次,基于有限元模型,分析分段交错不等磁极对极倍频电磁力谐波的削弱机理,并对比优化前后电机的关键电磁性能以及振动频谱。结果表明,分段交错不等磁极结构可在保证转矩密度的前提下,有效削弱极频电磁力谐波及振动。最后,对优化前后的样机进行振动实验,验证了优化方案的有效性。  相似文献   

3.
对一种磁极分段外圆弧偏心结构的表贴式永磁同步电机进行了优化设计,该种电机每段磁极内外圆弧具有不同的圆心。通过有限元分析,验证了新型磁极结构的优点。比较了不同偏心距和极弧系数下电机气隙磁密、齿槽转矩和反电动势波形,通过对偏心距和极弧系数的优化,可以有效降低气隙磁密谐波,减少反电动势谐波,抑制转矩脉动。该种磁极结构可以减少电机永磁材料用量和提高电机电磁性能。  相似文献   

4.
一种削弱永磁同步电动机齿槽转矩的方法   总被引:4,自引:1,他引:3  
为了研究实心转子永磁同步电动机的削弱措施,结合永磁电机永磁体极弧系数和永磁体不对称放置的方法,提出了一种仅改变实心转子非磁性槽楔的齿槽转矩削弱方法.通过非磁性槽楔的变化改变一个磁极的极弧宽度,其余磁极宽度不变,同时保持各个非磁性槽楔的宽度相同,通过合理的选择槽楔的形状和宽度,可以非常有效地削弱齿槽转矩.通过解析法研究了采用该方法后实心转子永磁同步电动机齿槽转矩的表达式,得到了永磁体剩磁平方的傅立叶分解表达式.据此得到了磁极的两种极弧宽度和磁极间距大小与齿槽转矩的关系式和磁极极弧宽度的确定方法.该方法仅改变了槽楔的形状,对电机结构影响较小,且合适极弧宽度组合较多,有限元验证表明该方法可有效地削弱齿槽转矩.  相似文献   

5.
抑制转矩脉动和振动噪声是设计永磁同步电机的难点之一。通过对永磁同步电机齿槽转矩形成机理进行分析,考虑极弧系数和大小极磁极结构对齿槽转矩的影响。基于等效面电流法对永磁同步电机的气隙磁场进行建模。采用粒子群算法优化了永磁同步电机的极弧系数,利用大小磁极结构配置方式,降低了气隙电磁力谐波对转矩脉动幅值影响较大的阶次,从而实现抑制电机齿槽转矩的目标。将永磁体优化前后的转矩脉动和噪声幅值进行对比表明,该方法可有效地降低永磁同步电机的转矩脉动和振动噪声。  相似文献   

6.
针对永磁同步电动机的转矩脉动削弱问题,研究了组合永磁磁极的转矩脉动削弱方法。组合磁极由两种性能不同的永磁材料组成,通过合理选择永磁材料与极弧宽度组合,可削弱气隙磁密和反电动势谐波,进而削弱转矩脉动。采用解析法计算组合磁极产生的气隙磁密和反电动势,研究组合磁极的极弧宽度变化对反电动势的谐波的影响,以总谐波失真最小为标准,得到极弧宽度组合。有限元计算结果表明,采用极弧宽度组合时,反电动势谐波和永磁电机的转矩脉动都得到了很好地削弱。  相似文献   

7.
局部切向电磁力波会通过定子齿的杠杆效应引起定子轭部径向振动,其对振动的贡献可以与径向电磁力波比拟。针对分数槽集中绕组永磁电机的局部切向电磁力波,提出了一种分段交错梯形磁极的削弱方法,该方法可在保证电机转矩密度的前提下,有效削弱局部切向电磁力引起的振动。首先,推导了作用于定子齿部的切向集中力模型,并以一台10极12槽永磁电机为例,分析了局部切向电磁力引起振动的原因。然后,基于有限元模型,分析了分段交错梯形磁极对局部切向电磁力的削弱机理,并对比了优化前后电机的径向力波、电磁转矩以及振动频谱。结果表明,分段交错梯形磁极结构对径向力、切向力均有显著的抑制作用。最后,对优化前后的样机进行振动实验,验证了优化方案的有效性。  相似文献   

8.
磁极组合型轴向磁场无铁心永磁电机的设计与分析   总被引:2,自引:0,他引:2  
在现有Halbach阵列永磁电机的基础上,提出了一种磁极组合式的Halbach永磁阵列轴向磁场无铁心电机,阐述了该电机的结构与优点,分析了该电机的电磁转矩。借助三维有限元分析方法,优化设计了组成转子磁极的Halbach永磁材料、软磁材料尺寸。在综合考虑单位体积永磁体所产生电磁转矩和气隙磁密正弦性的基础上,确定了电机转子磁极上轴向磁化、切向磁化永磁体以及软磁材料的极弧系数。与传统Halbach结构轴向磁场无铁心永磁电机相比,优化后的磁极组合型轴向磁场无铁心永磁电机,在保证气隙磁密大小一定的基础上,减少了永磁体用量,降低电机造价,从而提高了电机性价比。样机实验和有限元分析结果验证了所设计电机的正确性和有效性。  相似文献   

9.
转子齿形状对10极12槽开关磁通电机转矩特性的影响   总被引:1,自引:0,他引:1  
开关磁通永磁电机是一种新型的双凸极结构无刷电机,功率密度高且结构简单,但由于其自身的双凸极结构,转矩波动较大,会引起较大的振动和噪声。针对一种应用于电动汽车的10极12槽开关磁通永磁电机,研究开关磁通永磁电机电磁转矩,齿槽转矩与转矩波动的特点。利用有限元分析法研究分析不同绕组结构以及不同转子齿结构(包括开槽齿、阶梯齿、偏心齿)对转矩性能的影响。将开关磁通永磁电机的新型转子齿结构特性与传统转子齿结构特性进行对比分析,通过仿真数据验证这几种新型转子齿结构可以实现有效减小齿槽转矩与转矩波动的功能,并且其输出的电磁转矩减小比例不大。  相似文献   

10.
转矩脉动是影响电机性能的重要因素。针对常规的内置式永磁电机转矩脉动较大的问题,提出了一种保持永磁体总量不变的不等磁极组合方法,使某一磁极的极弧长度与其他磁极不同来抑制转矩脉动,给出了详细推导过程和磁极参数确定方法,并与斜槽结构做了性能对比。针对外转子内置式结构,对比分析了隔磁桥和磁障两种隔磁措施,建立了有限元模型对其进行仿真验证。最终研制了一台55 kW,2 500 r/min的样机,试验数据与仿真结果相吻合,验证了所提方法对齿槽转矩和反电动势谐波有着显著削弱效果,能够有效抑制转矩脉动,提高电机性能,具有一定工程实际意义。  相似文献   

11.
为降低电动汽车驱动电机的振动噪声,提升电动汽车的振动噪声性能,本文以一台电动汽车驱动用永磁同步电机为研究对象,推导出转子分段错极情况下径向电磁力的解析表达式,并分析错极角度、分段数对径向电磁力的影响。为进一步削弱电磁振动噪声,采用有限元法对比研究了未优化、转子分段错极优化,以及在分段错极基础上采用非均匀气隙这3种情况下径向电磁力和电磁振动噪声的大小;结果表明,同时采用转子分段错极和非均匀气隙的优化方式对电机径向电磁力和振动噪声削弱效果最佳。样机实验验证了仿真结果的准确性,为电动汽车驱动电机减振降噪的设计提供参考。  相似文献   

12.
为了实现轴向磁场永磁(axial field permanent magnet,AFPM)电机大转矩惯量比、低转矩脉动等高品质转矩输出,提出磁极径向组合式的AFPM电机,采用传统表贴永磁与Halbach永磁阵列沿径向排列的转子结构。分析电机运行原理,推导电机功率尺寸方程;通过有限元方法对比分析该结构与传统表贴式结构的磁场分布、转矩、转矩脉动、反电动势及电感等电磁特性。在此基础上,基于响应面分析,构建多目标遗传优化设计方法,对电机转矩、齿槽转矩、反电动势和转矩脉动进行优化设计。最后,基于优选参数加工制造样机,并进行实验研究,验证了该电机结构的有效性和分析的正确性。  相似文献   

13.
将轮辐型内置式转子和Halbach永磁阵列结合,并取消转子铁心加强筋,减小漏磁达到高聚磁同时兼顾凸极比,实现高转矩/功率密度和宽调速范围。在保证永磁体用量相同的情况下,建立新型高凸极比聚磁转子和V型转子两种电机模型,针对两者的分段转子拓扑,开展电磁性能对比分析,包括气隙磁密、凸极比、功率以及弱磁扩速能力等。同时,考虑到无转子铁心加强筋会导致转子分段存在结构强度问题,仿真验证新型高凸极比聚磁转子结构在最高转速6000 r/min时给予碳纤维护套保护下转子结构强度的可靠性;分析温度限制下新型高凸极比转子电机的功率输出。另外,对比两种不同电机结构的振动噪声情况。最后,研制一台16极/72槽新型高凸极比转子永磁电机样机,实验验证有限元分析结果的准确性。进一步说明了新型高凸极比转子永磁电机在转矩/功率密度和宽调速运行等方面的性能优势。  相似文献   

14.
为改善注塑机用永磁同步电动机的气隙磁密波形,降低振动和噪声,提出一种新的转子结构。设计了一台8极36槽永磁同步电动机,在转子铁心上适当打孔和开槽,借助电磁场有限元分析软件ANSYS Maxwell,建立电机模型,并对电机空载气隙磁场、齿槽转矩、电磁转矩及径向电磁力波进行了分析与计算,仿真结果表明,采用该转子结构可减少电机转矩脉动和气隙磁场谐波。样机试验结果验证了该电机设计的合理性。  相似文献   

15.
针对电动汽车驱动系统对永磁电机恒功率调速范围的较高要求,研究了内置V型磁路结构参数对永磁电机弱磁调速能力的影响。采用有限元仿真的方法分析相邻磁极间距和磁极中心植入深度与直轴电感、交轴电感、凸极率、气隙磁密和永磁磁链之间的关系,并由此得到永磁转矩和磁阻转矩的变化规律。结合电机控制器最大逆变电压和输出电流,总结出永磁电机反电势和转子结构参数与弱磁调速范围的关系。样机实验结果表明,通过调整转子磁路结构进而优化电机反电势和凸极率的方法能够有效拓宽永磁电机弱磁调速范围。电动汽车用永磁电机应适当增加转子相邻磁极间距并降低永磁体埋置深度,降低电机反电势的同时增加磁阻转矩,提高恒功率调速阶段带载能力。  相似文献   

16.
针对稀土永磁同步电机(PMSM)对稀土永磁材料依赖性大的问题,提出一种少稀土组合磁极Halbach PMSM,永磁体采用Halbach充磁方式。阐述了该电机新型转子的磁钢结构,其中主磁极由双层永磁体组成,上层磁钢为钕铁硼永磁材料,下层磁钢为铁氧体永磁材料,辅磁极磁钢也为铁氧体永磁材料。以电磁转矩、转矩脉动和齿槽转矩为优化标准,对电机每极永磁体块数、充磁角度、永磁体材料和永磁体厚度等电机参数进行优化。采用定子斜槽结构降低齿槽转矩。优化后的少稀土组合磁极PMSM在保证转矩性能的情况下,减少了永磁体用量,降低了电机成本。最后通过有限元法分析该电机在空载和额定负载下的特性,验证了该电机设计的合理性。  相似文献   

17.
分析了永磁同步电机电磁振动噪声原理,计算了一台4极/6槽内置式永磁同步电机多转速下的电磁振动噪声,并通过二维傅里叶分解分析其径向电磁力谐波分量。提出一种新型定转子结构,建立以噪声和转矩脉动为目标的多目标优化数学模型,并采用响应面算法确定最优的设计参数。对优化前后电机的电磁振动噪声进行了仿真对比。结果显示,电机结构优化后,转速3 500 r/min运行时电磁振动噪声减小较为明显,从62.02 dB削弱至53.53 dB;平均转矩基本无变化,转矩脉动有所减小;多转速运行时,电机振动噪声整体性能亦得到改善,验证了该结构优化对电机电磁振动噪声有较为明显的抑制作用。  相似文献   

18.
为了优化无轴承交替极永磁电机性能,从转子结构入手分析交替极转子结构及绕组形式对空载反电势、齿槽转矩等空载特性的影响,提出一种转子磁极离心的磁极形状优化设计方法。通过对比磁极优化前后空载和负载性能发现磁极形状优化对抑制反电势谐波、减小齿槽转、降低转矩脉动等具有积极意义,但同时也导致平均转矩和平均悬浮力的损失。为弥补平均转矩和悬浮力损失,提出采用适当增加转子外径、减小气隙长度的设计方法。最后利用有限元分析对比结构优化前后的基本电磁特性,电机转矩常数由0.155 N·m/A升至0.181 N·m/A,转矩脉动由30.4%降为12.1%;额定悬浮力由14.6 N升至23 N,悬浮力脉动由8%降为7.8%,最大径向耦合由7%升至7.7%。  相似文献   

19.
邓紫荣  曾成碧  卢杨  苗虹   郭欣  白维  张志辉 《微电机》2020,(11):45-49+55
针对传统内置式永磁同步电机磁阻转矩与永磁转矩不是在相同电流相位角下达到最大,不能最有效的利用磁阻转矩与永磁转矩的问题,提出了一种新型非对称转子结构永磁同步电机设计方案,电机输出转矩和减小转矩脉动。首先,一种不对称转子结构,通过使转子不对称,使磁阻转矩和永磁转矩在相近电流相位角下达到最大,从而提高输出转矩。其次,为衡量转矩利用率,引入转矩利用率因子,利用冻结磁导率法将电磁转矩分解为磁阻转矩和永磁转矩两部分,运用有限元确定表面磁极最佳偏移角θ;最后,对提出的新型非对称转子结构永磁同步电机进行电磁性能分析,在不增加材料与制造成本的情况下,电机最大输出转矩增加7.52%,转矩脉动减小39.15%。  相似文献   

20.
永磁同步电机的电磁转矩、转矩波动、电磁振动与噪声等电机性能与气隙磁密波形密切相关。减小气隙磁密中的谐波含量能够有效地削弱齿槽转矩、抑制转矩脉动,减小电机振动,提升电机的整体性能。对表贴式和内置式永磁同步电机来说,可以分别通过优化永磁体形状和转子表面铁心形状(统称为转子磁极优化技术)来减小气隙磁密中的谐波含量。该文回顾并总结了近年来国内外学者在永磁同步电机转子磁极优化技术方面所进行的研究工作,将不同的转子磁极优化技术进行归类,比较其优缺点。最后探讨了转子磁极优化技术尚存在的一些问题和未来发展的主要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号