首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

2.
Metal oxide/active carbon/ceramic (MOx/AC/C) monolithic catalysts were prepared by impregnation method for selective catalytic reduction (SCR) of NOx with NH3 at low-temperature, and they also had been characterized by elemental analysis, N2-BET, XRD, SEM and NO-TPD. The adsorption capability of the monolithic catalyst was greatly enhanced due to the attached active carbon. An ultrasonic treatment was used to improve the impregnation process, and which can increase their catalytic activities. More than 90% NOx conversion could be achieved over the Mn-based monolithic catalysts at low-temperature, and which could be improved further by doping Ce, from 30% to 78% at 100 °C. Mn–Fe–Ce and Mn–V–Ce monolithic catalysts had better tolerance to SO2 than Mn or Mn–Ce monolithic catalysts.  相似文献   

3.
Preliminary studies on a series of nanocomposite BaO–Fe ZSM-5 materials have been carried out to determine the feasibility of combining NOx trapping and SCR-NH3 reactions to develop a system that might be applicable to reducing NOx emissions from diesel-powered vehicles. The materials are analysed for SCR-NH3 and SCR-urea reactivity, their NOx trapping and NH3 trapping capacities are probed using temperature programmed desorption (TPD) and the activities of the catalysts for promoting the NH3 ads + NO/O2 → N2 and NOx ads + NH3 → N2 reactions are studied using temperature programmed surface reaction (TPSR).  相似文献   

4.
A catalytic deSoot–deNOx system, comprising Pt and Ce fuel additives, a Pt-impregnated wall-flow monolith soot filter and a vanadia-type monolithic NH3-SCR catalyst, was tested with a two-cylinder DI diesel engine. The soot removal efficiency of the filter was 98–99 mass% with a balance temperature (stationary pressure drop) of 315 °C at an engine load of 55%. The NOx conversion ranged from 40 to 73%, at a NH3/NOx molar ratio of 0.9. Both systems were measured at a GHSV of 52 000 l/(l h). The maximum NOx conversion was obtained at 400 °C. The reason for the moderate deNOx performance is discussed. No deactivation was observed after 380 h time on stream. The NOx emission at high engine loads is around 15% lower than that of engines running without fuel additives.  相似文献   

5.
Performance of NOx traps after high-temperature treatments in different redox environments was studied. Two types of treatments were considered: aging and pretreatment. Lean and rich agings were examined for a model NOx trap, Pt–Ba/Al2O3. These were done at 950 °C for 3 h, in air and in 1% H2/N2, respectively. Lean aging had a severe impact on NOx trap performance, including HC and CO oxidation, and NH3 and N2O formation. Rich aging had minimal impact on performance, compared to fresh/degreened performance. Deactivation from lean aging was essentially irreversible due to Pt sintering, but Pt remained dispersed with the rich aging. Pretreatments were examined for a commercially feasible fully formulated NOx trap and two model NOx traps, Pt–Ba/Al2O3 and Pt–Ba–Ce/Al2O3. Pretreatments were done at 600 °C for 10 min, and used feed gas that simulated diesel exhaust under several conditions. Lean pretreatment severely suppressed NOx, HC, CO, NH3 and N2O activities for the ceria-containing NOx traps, but had no impact on Pt–Ba/Al2O3. Subsequently, a relatively mild rich pretreatment reversed this deactivation, which appears to be due to a form of Pt–ceria interaction, an effect that is well known from early work on three-way catalysts. Practical applications of results of this work are discussed with respect to NOx traps for light-duty diesel vehicles.  相似文献   

6.
The selective catalytic reduction (SCR) of NOx (NO + NO2) by NH3 in O2 rich atmosphere has been studied on Cu-FAU catalysts with Cu nominal exchange degree from 25 to 195%. NO2 promotes the NO conversion at NO/NO2 = 1 and low Cu content. This is in agreement with next-nearest-neighbor (NNN) Cu ions as the most active sites and with NxOy adsorbed species formed between NO and NO2 as a key intermediate. Special attention was paid to the origin of N2O formation. CuO aggregates form 40–50% of N2O at ca. 550 K and become inactive for the SCR above 650 K. NNN Cu ions located within the sodalite cages are active for N2O formation above 600 K. This formation is greatly enhanced when NO2 is present in the feed, and originated from the interaction between NO (or NO2) and NH3. The introduction of selected co-cations, e.g. Ba, reduces very significantly this N2O formation.  相似文献   

7.
MnOx and Sm–Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm–Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm–Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm–Mn catalyst.  相似文献   

8.
The selective catalytic reduction of NO+NO2 (NOx) at low temperature (180–230°C) with ammonia has been investigated with copper-nickel and vanadium oxides supported on titania and alumina monoliths. The influence of the operating temperature, as well as NH3/NOx and NO/NO2 inlet ratios has been studied. High NOx conversions were obtained at operating conditions similar to those used in industrial scale units with all the catalysts. Reaction temperature, ammonia and nitrogen dioxide inlet concentration increased the N2O formation with the copper-nickel catalysts, while no increase was observed with the vanadium catalysts. The vanadium-titania catalyst exhibited the highest DeNOx activity, with no detectable ammonia slip and a low N2O formation when NH3/NOx inlet ratio was kept below 0.8. TPR results of this catalyst with NO/NH3/O2, NO2/NH3/O2 and NO/NO2/NH3/O2 feed mixtures indicated that the presence of NO2 as the only nitrogen oxide increases the quantity of adsorbed species, which seem to be responsible for N2O formation. When NO was also present, N2O formation was not observed.  相似文献   

9.
Two series of FeZSM-5 catalysts prepared from Na+ and NH4+ ZSM-5 precursors are studied in the selective reduction of NOx using NH3 and urea as reducing agents. All Fe-containing catalysts are active for NOx reduction in the SCR-NH3 reaction with ex-NH4+ catalysts being more active than ex-Na+ materials and the activity depending (to a minor extent within each series of catalysts) upon [Fe]. Catalysts with Bronstead acid sites also show a small transient deNOx activity at low temperatures. All catalysts are less active for the SCR-urea reaction but the ex-Na+ catalysts retain far more deNOx activity than the ex-NH4+ materials. NH3 TPD shows that strongly binding Bronstead acid sites are present on the ex-NH4+ materials and H+-treated parent zeolites while Urea TPD shows that the mode of decomposition of urea differs as a function of initial zeolite counter-ion. Urea TPSR shows that the reaction between adsorbed urea and gaseous NO/O2 is related to [Fe]. It is proposed that the decreased activity of the ex-NH4+ catalysts in the SCR-urea reaction is due to a less favourable mode of decomposition over these catalysts. Furthermore it is suggested that the Bronstead acidity plays some part in this less favoured decomposition.  相似文献   

10.
王瑞  归柯庭  梁辉 《化工进展》2016,35(Z2):192-199
采用柠檬酸络合浸渍法,通过对A位离子进行掺杂或取代和调节Ce的掺杂量,制备了一系列的负载型催化剂La1-xAxMnO3/赤铁矿(A=Ce、Co,x=0/0.1/0.2/0.3),并将催化剂应用于固定床NH3-SCR脱硝。采用XRD、BET、XRF、H2-TPR、NH3-TPD等表征手段对催化剂进行分析和表征。结果表明,Ce的掺杂提高了催化剂LaMnO3/赤铁矿的低温脱硝效率和拓宽了催化剂的活性温度窗口,如La0.8Ce0.2MnO3/赤铁矿催化剂,在180℃时,脱硝效率就高达98%,且在150~250℃温度区间的脱硝效率均在90%以上。结合表征分析证明,稀土元素Ce的适量掺杂,明显提高了LaMnO3/赤铁矿催化剂的氧化还原能力和催化剂表面NH3分子的吸附能力;稀土元素Ce的适量掺杂也改善了催化剂比表面积,也使活性物质高度分散在载体表面上。  相似文献   

11.
The current work is devoted to study of CO interaction with PdO/Al2O3–(Cex–Zr1−x)O2 catalysts. Ceria–zirconia–alumina supports with different Ce/Zr ratio were prepared by sol–gel technique. The FT-IR characterization of CO adsorbed at −120 and 25 °C on oxidized and reduced samples revealed that Ce/Zr ratio modifies the surface properties of support and oxidation state of palladium. The catalyst with Ce/Zr molar ratio 0.5/0.5 was characterized with the highest ability to stabilize palladium in oxide state and the highest activity to oxidize CO. Redox treatment of catalysts improves their catalytic activity.  相似文献   

12.
The Co–Mn–Al mixed oxide catalysts were prepared by thermal decomposition of hydrotalcite-like precursors with Co/(Mn + Al) molar ratio of 2 and Mn/Al molar ratio varying from 0 to 2. The obtained catalysts were characterized by powder XRD, XPS, BET surface area and TPR measurements and tested in N2O decomposition. The most active Co4MnAl catalyst exhibited both the optimum Mn/Al molar ratio and the optimum amount of components reducible in the temperature region in which the catalytic reaction proceeds (350–450 °C).  相似文献   

13.
The reaction between hydrogen and NO was studied over 1 wt.% Pd supported on NOx-sorbing material, MnOx–CeO2, at low temperatures. The result of pulse mode reactions suggest that NOx adsorbed as nitrate and/or nitrite on MnOx–CeO2 was reduced by hydrogen, which was spilt-over from Pd catalyst. The NOx storage and reduction (NSR) cycles were carried out over Pd/MnOx–CeO2 in a conventional flow reactor at 150 °C. In a storage step, NO was removed by the oxidative adsorption from a stream of 0.04–0.08% NO, 5–10% O2, and He balance. This was followed by a reducing step, where a stream of 1% H2/He was supplied to ensure the conversion of nitrate/nitrite to N2 and thus restore the adsorbability. It was revealed that the NSR cycle is much more suitable for the H2–deNOx process in excess O2, compared to a conventional steady state reaction mode.  相似文献   

14.
Plasmacatalytic processes for environmental problems   总被引:14,自引:0,他引:14  
The application of non-thermal electrical discharges instead of thermal energy has been shown to be a suitable alternative for the treatment of exhaust gases, especially for low concentrations (<100 ppmv) of contaminants. In the present paper, we describe the synergetic application of plasma and catalytic treatment for the oxidative removal of volatile organic compounds (VOCs) and the low-temperature conversion of NOx to N2 in excess oxygen.

The catalytic oxidation of butyl acetate and dichloroethene (DCE) as typical VOC has been studied at 50–200°C in combination with pulse corona or dielectric barrier discharges (DBDs). The best results with a significant synergetic effect were obtained with mixed transition metal oxide catalysts, which are able to decompose the ozone at low (<120°C) temperature. With respect to treatment by the plasma alone, the combination shifts the process towards total oxidation. The amount of reaction by-products such as formyl chloride (in case of chlorocarbons), CO, nitric oxides and ozone is lowered. The synergetic effect has been verified at technical conditions in the plasmacatalytic removal of VOC from stripper air in a groundwater cleaning plant.

The NH3-SCR of NOx in excess oxygen using a NH4-loaded zeolite at 100°C can be significantly accelerated if combined with a plasma discharge. The mechanism of the reaction has been verified by labeling NO with 15NO and by a double-labeled experiment using 15NO and 15NH4-zeolite. Experiments with a diesel engine have shown that the plasmacatalytic conversion of NOx to N2 is also effective at real technical conditions.  相似文献   


15.
Reaction activities of several developed catalysts for NO oxidation and NOx (NO + NO2) reduction have been determined in a fixed bed differential reactor. Among all the catalysts tested, Co3O4 based catalysts are the most active ones for both NO oxidation and NOx reduction reactions even at high space velocity (SV) and low temperature in the fast selective catalytic reduction (SCR) process. Over Co3O4 catalyst, the effects of calcination temperatures, SO2 concentration, optimum SV for 50% conversion of NO to NO2 were determined. Also, Co3O4 based catalysts (Co3O4-WO3) exhibit significantly higher conversion than all the developed DeNOx catalysts (supported/unsupported) having maximum conversion of NOx even at lower temperature and higher SV since the mixed oxide Co-W nanocomposite is formed. In case of the fast SCR, N2O formation over Co3O4-WO3 catalyst is far less than that over the other catalysts but the standard SCR produces high concentration of N2O over all the catalysts. The effect of SO2 concentration on NOx reduction is found to be almost negligible may be due to the presence of WO3 that resists SO2 oxidation.  相似文献   

16.
A series of Pt and Pt,Cu supported catalysts were prepared by wet impregnation of Mg–Al supports obtained from hydrotalcite-type (HT) precursor compounds. These novel NOx storage-reduction (NOxSR) catalysts show improved performances in NOx storage than Pt,Ba/alumina NOxSR catalysts at reaction temperatures lower than 200 °C. These catalysts show also improved resistance to deactivation by SO2. The effect is attributed to the formation of well dispersed Mg(Al)O particles which show good NOx storage properties. The promoted low temperature activity is explained by the lower basicity of the Mg(Al)O mixed oxide in comparison to BaO, which induces on one hand a lower inhibition on Pt activity (NO to NO2 oxidation and/or hydrocarbon oxidation) due to electronic effect, and on the other hand a lower thermal stability of the stored NOx. The presence of Cu slightly inhibits activity at low temperature, although improves activity and resistance to deactivation at 300 °C. On these catalysts FT-IR characterization evidences the formation of a Pt–Cu alloy after reduction.  相似文献   

17.
Aluminium-doped mesoporous monolithic silica possessing fine mesopores has been prepared via the direct liquid crystal templating pathway using a non-ionic surfactant template and has been used as a support for cobalt-, copper-, and iron-based formulations in the selective catalytic reduction (SCR) of NO with ammonia in the presence of oxygen at low temperatures in the range of 373–723 K. The monolithic support was characterised by N2 gas adsorption at 77 K, powder X-ray diffraction (XRD) and NH3 adsorption at 373 K. Surface area, pore structure and surface acidity of the catalysts before and after being subjected to catalytic testing were determined, and good stability of pore structure and surface properties under SCR conditions was indicated. The NO conversions on aluminosilicate monolith-supported catalysts were compared with those observed on the reference catalyst, EUROCAT powder. The Co-functionalised catalysts appeared less relevant to DeNOx purposes. Two impregnated and two ion-exchanged catalysts containing copper and iron showed catalytic performance comparable to that of the reference catalyst. They produced only small amounts of undesired product N2O, the Fe-containing formulations being even more selective than EUROCAT. The nature of metal species in these catalysts was investigated with the aid of Cu 2p X-ray photoelectron spectroscopy (XPS) and 57Fe Mössbauer spectroscopy.  相似文献   

18.
The fast SCR reaction using equimolar amounts of NO and NO2 is a powerful means to enhance the NOx conversion over a given SCR catalyst. NO2 fractions in excess of 50% of total NOx should be avoided because the reaction with NO2 only is slower than the standard SCR reaction.

At temperatures below 200 °C, due to its negative temperature coefficient, the ammonium nitrate reaction gets increasingly important. Half of each NH3 and NO2 react to form dinitrogen and water in analogy to a typical SCR reaction. The other half of NH3 and NO2 form ammonium nitrate in close analogy to a NOx storage-reduction catalyst. Ammonium nitrate tends to deposit in solid or liquid form in the pores of the catalyst and this will lead to its temporary deactivation.

The various reactions have been studied experimentally in the temperature range 150–450 °C for various NO2/NOx ratios. The fate of the deposited ammonium nitrate during a later reheating of the catalyst has also been investigated. In the absence of NO, the thermal decomposition yields mainly ammonia and nitric acid. If NO is present, its reaction with nitric acid on the catalyst will cause the formation of NO2.  相似文献   


19.
Cu–Mn mixed oxides were prepared by a co-precipitation method and applied for low temperature NO reduction with NH3 in the presence of excess oxygen. Effects of [Cu]/[Mn] ratio and calcination temperatures on NOx conversions were investigated. Cu–Mn oxide catalysts containing small amounts of copper showed the complete NOx conversion in a wide range of reaction temperature from 323 to 473 K. This catalyst showed a reversible deactivation due to the presence of water vapor and SO2. Different catalytic activities of Cu–Mn mixed oxides could be attributed mainly to surface areas and the crystalline nature.  相似文献   

20.
The selective catalytic reduction (SCR) of nitrogen oxides (NOx) by propane in the presence of H2 on sol–gel prepared Ag/Al2O3 catalysts (0.5–5 wt.% Ag) was investigated. It was confirmed that hydrocarbon-assisted SCR of NOx is remarkably enhanced by co-feeding hydrogen to a lean exhaust gas mixture (λ>1), attaining considerable activity within a wide temperature window (470–825 K). The samples had marginal activity at 575 K without co-fed H2, but achieved up to 60% NOx conversion in the presence of H2 at a space velocity of 30,000 h−1. NO2 as NOx feed component is not converted to N2 by C3H8 to a substantial extent under lean conditions. This points to an activation route of NO through direct conversion to adsorbed nitrite/nitrate or to a dissociation of NO over Ag0, formed through short-term reduction by H2. The nature of Ag species was characterized by X-ray diffraction, temperature-programmed reduction, pulse thermoanalytical measurements, electron microscopy and FTIR spectroscopy. It could be shown that Ag2O nano-sized clusters are predominantly present on all samples, whereas formation of silver aluminate could not be confirmed. Nano-sized Ag2O clusters can reversibly be reduced/reoxidized by H2. A silver loading higher than 2 wt.% leads to a part of Ag2O particles, which are thermally decomposed during calcination at 800 K or higher. The catalytic role of this metallic silver is still unclear. Formal kinetic analysis of catalytic data revealed that the activation energy of the overall reaction is significantly lowered in the presence of H2. The presence of water does not change the activation energy. It is concluded that hydrogen reduces the nano-sized Ag2O clusters to Ag0 on a short-term scale. Zero-valent silver promotes a dissociation pathway of NOx conversion. The fact that more oxidized ad-species (nitrite/nitrate) are observed in the presence of H2 is attributed to a dissociative activation of gas-phase oxygen on Ag0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号