首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
刘清华  丁卫  胡小芳 《城镇供水》2014,(2):38-40,37
通过对微污染水源水的强化混凝试验,研究不同的聚合氯化铝投加量对消毒副产物三卤甲烷生成势、UV254及TOC的影响。结果表明,增加聚铝投加量时三卤甲烷生成势呈现下降的趋势,当聚铝投加量为2.7mg/L时,三卤甲烷生成势的去除由原水的238.9μg/L降至114.5μg/L,去除率高达52.07%,四次试验的平均去除率达40%;投加不同聚铝量后UV254呈现下降的趋势,当聚铝投加量为2.7mg/L时,UV254由原水的0.070降至0.042,去除率达40%,且四次试验的平均去除率达到32.32%;投加不同聚铝量后TOC呈现下降的趋势,当聚铝投加量为2.7mg/L时,TOC的去除由原水的3.231mg/L降至1.226mg/L,去除率高达62.06%,四次试验的平均去除率达到48.48%。  相似文献   

2.
通过正交试验确定了混凝的最佳工艺条件,当原水中藻类浓度为(8.94×108)~(38.4×108)个/L、浊度为5.10~5.31 NTU、色度为15.8~25.9倍时,三氯化铁的最佳投加量应在50~70 mg/L,此时藻类和浊度的平均去除率均在85%左右.试验还发现藻类的混凝效果与其生长期有一定的关系,其中以稳定期的藻类混凝效果最佳,藻类去除率最高可达89%.研究还发现,pH值对藻类去除影响显著,当将进水pH值由7.47调到6.04,投药量由50 mg/L降为30 mg/L时,藻类的去除率可由88%升高到97%.由此可见,调节pH值不仅可以提高藻类的去除率,还可以大大降低混凝剂的投加量.  相似文献   

3.
以乐果为目标化合物,探讨了活性炭吸附、活性炭吸附-混凝沉淀工艺以及石灰碱解-活性炭吸附-混凝沉淀三种工艺对乐果的去除效果.结果表明,乐果的去除效果随着活性炭投加量与吸附时间的增加而增加,采用活性炭吸附-常规混凝沉淀工艺对乐果的去除效果要略好于单独采用活性炭吸附,但这两种工艺都不能有效去除水中的乐果.采用石灰碱解-活性炭吸附-混凝沉淀工艺时,乐果的去除率随着石灰碱解的pH值升高而增加.当原水乐果含量为0.182 mg/L,用石灰调节原水pH值为9,投加30 mg/L活性炭吸附20 min后,去除率达89.9%,沉淀出水乐果浓度为0.018 4 mg/L,满足标准要求.  相似文献   

4.
采用硫酸铝混凝强化去除微氧EGSB反应器出水中的TP,考察了混凝时间和沉淀时间、混凝剂投量、pH和温度等对强化除磷效果的影响,以分析微氧EGSB/化学混凝组合工艺作为生活污水再生回用工艺的可行性。结果表明,在最佳Al3+/TP值(质量比)为1.5~2.3、混凝时间为20min、沉淀时间为20min的条件下,对TP的去除率可达94.6%~96.4%,出水TP可降至0.29mg/L,达到了GB18918—2002的一级A标准,证明了微氧EGSB/化学混凝组合工艺作为生活污水再生回用工艺是可行的。硫酸铝的混凝除磷效果对pH的变化较敏感,最佳pH值范围为6.5~7.2,此时对TP的去除率可达到90.8%~92.1%;微氧EGSB反应器出水pH值为6.5~8.5,投加硫酸铝后能获得85%以上的TP去除率,出水TP最高可达0.85mg/L,因此需要适当调节pH使出水TP0.5mg/L,以满足回用要求。硫酸铝混凝除磷的适宜温度为10~25℃,微氧EGSB反应器出水的温度满足此要求。  相似文献   

5.
吴洁  程方 《供水技术》2008,2(5):25-29
通过考察强化混凝中混凝剂种类及投加量、氧化性助凝剂种类及投加量、氧化时间、pH以及水力条件等因素对海水中Chl-a、CODMn去除效果的影响,确定了试验参数,并后续加入砂滤工艺考察其除藻效果.结果表明:在调节海水pH值为5~6,选用3 mg/L高锰酸钾预氧化30min后,投加混凝剂聚合氯化铝铁(PAFC)对Chl-a和CODMn均有较佳的去除效果.强化混凝-沉淀-砂滤工艺对Chl-a平均去除率可以达到80%以上,对CODMn去除率在50%左右,对浊度的去除率大干97%.  相似文献   

6.
采用浓度分别为15、20、25 mg/L的聚合氯化铝(PAC)联合硅藻土强化混凝处理河北南部南水北调水源水,研究了对浊度、叶绿素a、COD_(Mn)和UV_(254)的去除效果以及残余铝含量;通过改变硅藻土与PAC的投加时间和顺序,确定最佳混凝条件。结果表明:单独投加PAC时,其最佳投加量为25 mg/L,对浊度、叶绿素a、COD_(Mn)、UV_(254)的去除率分别为92%、86. 7%、34%、30%;同时投加PAC和吸附剂硅藻土时,对叶绿素a的去除率有大幅度提高,强化混凝处理南水北调水源水的最佳药剂组合为15 mg/L的PAC和20 mg/L硅藻土,对浊度和叶绿素a的去除率均为93%,对COD_(Mn)及UV_(254)的去除率分别达到41. 4%和37. 9%,残余铝含量降至0. 179 mg/L;先投加PAC慢速搅拌10 min后再投加硅藻土进行混凝对各指标的去除率最高,对浊度、叶绿素a、COD_(Mn)及UV_(254)的去除率分别达到94. 4%、93%、41. 8%、38. 4%,残余铝含量低至0. 176 mg/L。  相似文献   

7.
饮用水源突发镉污染的应急处理技术研究   总被引:2,自引:0,他引:2  
为应对可能出现的突发性镉污染事件,采用连续流试验考察了常规混凝沉淀工艺、KMnO4预氧化/混凝沉淀工艺、粉末炭(PAC)吸附/混凝沉淀工艺、KMnO4和PAC联用/混凝沉淀工艺以及高锰酸盐复合药剂(PPC)预氧化/混凝沉淀工艺对镉的去除效果。结果表明,常规混凝沉淀工艺的除镉效果有限,聚合氯化铝投量为4 mg/L时,对Cd2+的去除率仅为10.5%;KMnO4预氧化/混凝沉淀工艺、PAC吸附/混凝沉淀工艺、KMnO4和PAC联用/混凝沉淀工艺对Cd2+的去除率均有提高,但出水水质仍不能满足国家饮用水水质标准。PPC预氧化/混凝沉淀工艺的除镉效果明显,当PPC投量为3.5 mg/L时,沉后水中剩余Cd2+浓度降低至3.3μg/L,达到了国家饮用水水质标准,去除率为95.2%。因此,PPC预氧化可以作为东江沿岸水厂应对镉污染的一种有效的应急处理措施。  相似文献   

8.
为了探讨混凝法去除水中纳米颗粒的可行性及最佳条件,研究了无机混凝剂(PAC、PFS、PAFC)和有机絮凝剂(CPAM、APAM、NPAM)对TiO_2纳米颗粒的去除效果,并考察了投加量、pH、沉淀时间、水力条件及有机无机复配对TiO_2纳米颗粒去除效率的影响。单独投加PAC、PFS和PAFC时,三者对应的最高去除率分别为92.51%、84.43%、95.66%。单独投加CPAM、APAM、NPAM时三者对应的去除率仅为61.72%、29.06%、55.37%。复配最佳混凝条件为:投加40mg/LPAC和3mg/LCPAM,pH值为9,G值143.5/s,沉淀时间15min,此时,TiO_2纳米颗粒去除率为99.6%。  相似文献   

9.
通过中试考察了混凝预处理对浸入式连续微滤工艺处理有机物的强化去除效果。研究表明,选用三氯化铁做混凝剂时的膜过滤性能优于聚合氯化铝,三氯化铁投加量为4 mg/L,反应时间为6 min时膜的过滤性能较好;采用直接微滤膜工艺对有机物的去除效果较差,膜出水CODMn去除率仅为30%,投加4 mg/L三氯化铁后CODMn去除率提高了10.5%,采用混凝预处理对提高浸入式连续微滤工艺有机物的去除效果非常有效。  相似文献   

10.
高铁酸盐预氧化强化混凝法去除苯胺的研究   总被引:2,自引:1,他引:1  
采用高铁酸盐预氧化强化混凝法去除水体中的苯胺,考察了高铁酸盐投加量、投加时间、pH、氧化时间等因素对处理效果的影响.结果表明,高铁酸盐预氧化能显著提高混凝法对苯胺的去除效果,当苯胺浓度为5.5mg/L、混凝剂三氯化铁的投量为20mg/L时,投加0.6mg/L的高铁酸盐即可使苯胺浓度降至0.1mg/L以下;pH对高铁酸盐去除苯胺的影响不大,当pH值为5~11时,对苯胺的去除率均大于98%,其中当pH=7时去除率最高;适当延长高铁酸盐的氧化时间可提高对苯胺的去除效果,苯胺的初始浓度不同,最佳氧化时间也不同.  相似文献   

11.
以洗浴废水为研究对象,比较了铝盐、铁盐及有机高分子混凝剂对洗浴废水中的LAS去除效果,筛选出聚合氯化铝(PAC)作为混凝剂处理效果较好,进而采用单因素试验研究了混凝剂的投加量,废水的pH,静沉时间,搅拌强度和搅拌时间对LAS去除率的影响,结果表明PAC投加量为45 mg/L,废水pH值为6.0~8.0,静沉时间为15 min,中速(150 r/min)搅拌3 min,慢速(50 r/min)搅拌10 min时混凝效果最佳,对LAS的去除率达44.75%。  相似文献   

12.
《供水技术》2021,15(1)
当水源地藻类或水草大量生长时,原水出现p H过高、溶解氧饱和、总碱度降低的变化,此时仍采用聚合氯化铝(PAC)处理,出厂水存在铝和pH超标风险。试验研究得出,当硫酸铝投加量为55 mg/L或组合投加45 mg/L硫酸铝+10 mg/L PAC,以及调节原水pH值至8.5后投加20 mg/L PAC时,可使出水中铝和pH均符合国标要求。  相似文献   

13.
王旭  罗彬  林涛  陈卫 《供水技术》2008,2(5):11-14
分析了高锰酸盐复合药剂(PPC)对石油的氧化性能,研究了PPC用于混凝时对石油的强化去除效果和PPC-粉末活性炭联用除油技术.结果表明:PPC对石油有较好的氧化性能,去除率达35%以上,PPC在原水中性条件下,对石油的处理效果最佳;原水石油低倍超标(<0.5mg/L)时,原水中性条件下投加1.5 mg/L PPC和20 mg/L聚合氯化铝(PAC)可保证出水水质达标;PPC-粉末活性炭吸附联合技术对石油的最大可处理污染浓度为5.5 mg/L.  相似文献   

14.
采用预臭氧/混凝/气浮工艺处理水库高藻原水,研究该工艺的最优运行参数。结果表明,在原水藻含量为1.4×108个/L的条件下,当臭氧投加量为1 mg/L、聚合氯化铝铁(PAFC)投加量为20 mg/L、气浮回流比为10%时,除藻效果最好,去除率可达到90%以上;另外发现,适当的预臭氧氧化可提高气浮对藻类的去除效率,投加臭氧较不投加可将除藻率提高40%以上。  相似文献   

15.
PAC和PAM复合混凝剂处理垃圾渗滤液的研究   总被引:4,自引:1,他引:3  
通过投加混凝剂聚合氯化铝(PAC)和助凝剂聚丙烯酰胺(PAM)对垃圾渗滤液进行混凝沉淀处理,根据单因素和正交试验确定其最佳工艺条件.结果表明,混凝的最佳条件:PAC投加量为750 mg/L、PAM投加量为15 mg/L、快速(150 r/min)搅拌1 min、中速(45 r/min)搅拌6min、慢速(35 r/min)搅拌7 min、在快速混合之后投加助凝剂.在该处理条件下,系统对垃圾渗滤液中COD和浊度的去除率达到最大,分别为27.45%和65.80%.  相似文献   

16.
以砷为目标污染物,北江水为本底,采用KMnO_4-FeSO_4(PPC)氧化混凝方法去除水中砷,通过烧杯实验和移动式水质应急实验平台优化工艺参数。该方法投加混凝剂量少,产生污泥量少,絮体沉降性能好,对滤池负荷增加小,便于操作,无需增加构筑物,经济可行;而且有较宽的pH适应范围,处理后出水各水质指标达标等优点。实验结果:当KMnO_4和FeSO_4投加量分别为0.01mmol/L和0.025mmol/L时,去除率最高达到98.9%,最佳pH范围6~8。处理后出水pH基本能稳定在7.5左右,浊度1NTU,而且出水中铁0.3mg/L、锰0.1 mg/L。  相似文献   

17.
针对邯郸市双水源供水体系,开展了预氧化强化混凝工艺处理南水北调-本地水库掺混源水试验。结果表明,单因素试验得到的PAC、次氯酸钠最佳投加量分别为5~15、0. 1~1. 0mg/L,慢速反应搅拌速度以60~100 r/min为宜;采用Box-Behnken法对单因素试验参数进行优化,并建立了响应值为叶绿素a和浊度去除率与PAC、次氯酸钠投加量及慢速反应搅拌速度的二次回归模型,通过Design-Expert软件得到的最优工艺参数如下:PAC投加量为11. 85 mg/L、次氯酸钠投加量为0. 88 mg/L、慢速反应搅拌速度为67 r/min,此时对叶绿素a和浊度去除率的预测值分别为93. 27%、90. 79%,与实测值93. 26%、90. 85%高度接近。  相似文献   

18.
采用臭氧处理北京市高碑店污水处理厂二沉池出水,就臭氧对二沉池出水的氧化特性进行了研究。结果表明,臭氧对二沉池出水中的COD、色度、UV254均有较好的去除效果,但对TOC的去除效果较差。试验条件下,臭氧的最佳投加量为10 mg/L、最佳接触时间为15 min,此时对COD的去除率为19.12%,去除单位COD的臭氧投加量为1.79 mg;对色度的去除率为58.59%,去除单位色度的臭氧投加量为1.46 mg;对UV254的去除率为39.57%,去除0.001 cm-1吸光度的臭氧投加量为2.82 mg;TOC/UV254提高到140.29,可生化性提高了1.59倍。  相似文献   

19.
针对四环素类抗生素(TCs)生产废水在生物处理过程中普遍存在的泡沫剧烈、污泥沉降困难、处理效率低等问题,提出了生物曝气—铁盐混凝预处理工艺。结果显示,生物预处理工艺既可以提高TCs去除率,又能够降低铁盐投加量,当铁盐投加量(以Fe计)为100 mg/L时,TCs去除率由27.5%提高到84.5%;对于未经生物预处理的废水,若要达到相同的TCs去除效果,铁盐投加量为600 mg/L。这可能是由于废水中77.8%的挥发性脂肪酸在生物预处理过程中被有效去除,从而降低了其对铁盐混凝去除TCs的干扰。经过生物预处理后,后续生物处理系统出水COD由531 mg/L降至199 mg/L,处理效果提升明显。  相似文献   

20.
采用沉淀-混凝法和沉淀-混凝-微滤组合工艺处理含锡废水,分析两种方法对锡的去除效果和膜污染情况。试验结果表明,采用沉淀-混凝法除锡基本可以满足《锡、锑、汞工业污染物排放标准》(GB 30770—2014)的要求;当原水p H值约为3.0、锡浓度为17.7 mg/L、Na2CO3投加量为90 mg/L、三氯化铁投加量为2.90 mg/L(以Fe计)时,沉淀-混凝-微滤组合工艺对锡的去除率高达99.97%,并且该工艺膜污染速率缓慢,经过物理清洗后膜通量恢复率为92.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号