首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vehicular Ad hoc Networks, also known as VANETs, enable vehicles that are not necessarily within the same radio transmission range to communicate with each other. VANETs also allow vehicles to connect to Roadside Units (RSUs). The latter are connected to the Internet, forming a fixed infrastructure that offers them the capability of communicating with each other and with roaming vehicles. RSUs support cooperative and distributed applications in which vehicles and RSUs work together to coordinate actions and to share and process several types of information. RSUs have so far been used for different roles such as data disseminators, traffic directories, location servers, security managers, and service proxies. In this paper, we focus on routing; namely we exploit RSUs to route packets between any source and destination in the VANET. To our knowledge, this is the first attempt to use the RSU backbone to efficiently route packets to very far locations in VANETs by using geographic forwarding. We evaluate the RSU backbone routing performance via the ns2 simulation platform. We compare our scheme to existing solutions and prove the feasibility and efficiency of our scheme in terms of query delay, packet success delivery ratio, and total generated traffic.  相似文献   

2.
In recent years, Vehicle Ad Hoc Networks (VANETs) have become very popular. A VANET network is mainly constructed with an infrastructure composed of mobile vehicles and fixed Road Site Units (RSUs). RSUs are usually very expensive to install, this limits their number, especially in suburbs and areas of sparse population. Therefore, RSUs are precious resource in VANET. In order to promote the utility of RSUs, we propose a novel mechanism, Distributed Sorting Mechanism (DSM), to improve the efficiency of communication between vehicles and RSUs (Vehicle to Infrastructure, V2I). In DSM, every vehicle can individually calculate its own priority of communication, and the time to compete and obtain the channel can be reduced. We further consider the vehicles moving away from the coverage of communication and adjust their priorities of communication appropriately. Moreover, DSM owns the characteristic of “Deadline First” in specific situations. Using DSM not only simplifies the handoff procedure and reduces the network overhead, but also achieves adequate utilization of RSU resources.  相似文献   

3.
Vehicular ad‐hoc networks (VANETs) play a vital role in today's context of vehicular traffic. In this paper, clusters of vehicles are created on the basis of average speed of the vehicles. One cluster communicates with the next cluster through a cluster head and also share the same information with next cluster heads and installed road side units (RSUs). By using this technique, we can solve the problem of rough driving behavior and road terrorism which is due to speed variation of vehicles and fake information dissemination by the drivers. Many a times, drivers may spread fake accident‐related information into the network which is a serious cause of concern in VANETs. It is ensured that such drivers are not allowed to spread wrong information in the network to avoid accidents. To solve this problem, we developed performance enhancement of traffic information gathering (PEnTInG) algorithm that selects only those drivers/vehicles as cluster heads in a cluster who has maximum value of the cluster head factor (CHF). The CHF is derived by considering different weights in range of 0 to 1 of relative average speed, time to leave, trust factor, and neighborhood degree. Further, the elected cluster head shares and stores the same information with the RSUs. In case, a driver wants to disseminate fake or wrong information in a network, then that vehicle driver can be easily tracked by the local authority by accessing RSU data. Simulation results show that the stability of PEnTInG is increased by 25% against the existing schemes viz. lowest‐ID, MCMF, and cluster‐based technique.  相似文献   

4.
The rapid growth of vehicular applications has resulted in high demand for Internet technology, which demands an unprecedented network capacity and a high quality of service (QoS). In vehicular ad hoc networks (VANETs), since nodes (vehicles) are highly mobile. The dynamic nature of the network topology in the VANET system changes due to frequent changes in link connectivity. The vehicles-to-vehicles (V2V), vehicles-to-infrastructure (V2I), and QoS, as well as the heterogeneity of applications within the VANET. VANETs have been introduced to make driving comfortable by providing safety and support to drivers. Due to the flexibility and offloading schemes available in-vehicle applications, there are some limitations. However, there are many issues in providing optimum service provisioning and scheduling in the vehicular environment. In VANETs, BSs and roadside units (RSUs) improve QoS. However, Internet services transmit packets to vehicles using stochastic models, and it predicts the traffic on a VANET. We provide open challenges to drive stochastic models in this direction.  相似文献   

5.
Zhang  Xiaojun  Wang  Wenchen  Mu  Liming  Huang  Chao  Fu  Hong  Xu  Chunxiang 《Wireless Personal Communications》2021,120(4):3171-3187

Vehicular ad-hoc network (VANET) has been considered as one of the most promising wireless sensor technologies, which could enhance driving convenience and traffic efficiency through real-time information interaction. Nevertheless, emerging security issues (e.g., confidentiality, integrity, identity privacy, message authentication) will hinder the widespread deployment of VANETs. To address these issues, in this paper, we propose an efficient privacy-preserving anonymous authentication protocol for VANETs. We first design an identity-based signature algorithm, and exploit it with an account information of a vehicle to propose our anonymous authentication protocol. The protocol enables each vehicle to anonymously send an authenticated message to nearby roadside units (RSUs) in a confidential way, and efficiently check the feedback information from nearby RSUs. Simultaneously, the protocol achieves key-exchange functionality, which could produce a session key for later secure communication between vehicles and RSUs. Finally, we give the security analysis of the proposed protocol and conduct a comprehensive performance evaluation, the results demonstrate its feasibility in the secure deployment of VANETs.

  相似文献   

6.
This paper introduces a new vehicle localization approach for global positioning system‐challenged road segments (e.g., tunnels), which takes advantage of roadside units (RSUs) and in‐vehicle inertial navigation system (INS). In the proposed approach, namely RSU/INS‐aided localization system (RIALS), vehicles only need one RSU in their transmission range for an accurate positioning. The beacons received from the RSU along with the information provided by the INS system are used for establishing and maintaining particular locus circles. After linearization, the system of locus circle equations is solved using the linear least square estimation technique, and the estimated vehicle's position is obtained. In the presence of speed variations and existing ranging and INS estimation errors, the proposed RIALS adaptively sets the sufficient number of required locus circles, aiming at keeping the localization error below a given threshold. We study the effects of ranging and INS estimation errors on localization accuracy of RIALS from analytical and simulation perspectives. Results of extensive simulations show that the localization error is more sensitive to the ranging error than the INS error. Moreover, the network traffic overhead of the proposed method is considerably lower than other competitive localization approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In VANETs, vehicles broadcast traffic-related messages periodically according to Dedicated Short Range Communication protocol. To ensure the reliability and integrity of messages, authentication schemes are involved in VANETs. As traffic-related messages are time-sensitive, they must be verified and processed timely, or it may cause inestimable harm to the traffic system. However, the OBUs and the RSUs are limited in computation ability and cannot afford vast messages’ verification. Recently, some identity-based authentication schemes using bilinear pairing have been proposed to improve the efficiency of message verification for VANETs. Nevertheless, the bilinear pairing is not suited for VANETs due to its complex operations. The design of an efficient and secure authentication scheme with low computation cost for VANETs still is a rewarding challenge. To settle this challenge, a new efficient identity-based authentication scheme is proposed in this paper. The proposed scheme ensures reliability and integrity of messages and provides conditional privacy-preserving. Compared with the most recent proposed authentication schemes for VANETs, the computation costs of the message signing and verification in the proposed scheme reduce by 88 and 93 % respectively, while security analysis demonstrates that our proposed scheme satisfies all security and privacy requirements for VANETs.  相似文献   

8.
Vehicular wireless networks offer wireless multi‐hop communications between vehicles and roadside units (RSUs). To reduce deployment cost, the distance between two RSUs could be long; that is, the communications between an RSU and a vehicle may be carried out through multi‐hops among intermediate vehicles. When a vehicle is driven from one RSU to another, the wireless multi‐hop delay becomes more serious as the number of multi‐hop relays increases. The wireless multi‐hop delay is critical for some emergency service. For instance, in a traffic accident, when a patient was sent to the hospital by ambulance, the life information of the patient must be transmitted to the hospital on time through the multi‐hop wireless network. If the ambulance is moved from one RSU to another, the wireless multi‐hop delay becomes more and more serious as the ambulance is closing to another RSU. In this paper, we propose an RSU re‐routing strategy that dynamically alters multi‐hop communications until the best RSU with the shortest path using location information is found. Moreover, we compare the proposed strategy with the existing strategy in terms of broadcasting costs, re‐routing delay, and wireless multi‐hop delay of data transmission. Performance results show that the proposed strategy can reduce the wireless multi‐hop delay significantly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In recent years, the research of vehicular ad-hoc networks (VANET) has become increasingly popular. More and more vehicles want their requests to be served from roadside units (RSU) in VANET, thus the service scheduling of RSU becomes an important task, especially when a large number of vehicles drive past the RSU and access data. Obviously, different kinds of request messages have different degrees of emergency, in other words, request messages have different priorities while scheduling. In order to provide a more effective and appropriate scheme, in this paper we study the scheduling of service algorithm in VANET, and proposed a novel broadcast-first service scheduling scheme. That scheme is on the basis of existing priority schemes, and takes channel bandwidth and processing capability of RSU into consideration so as to cope with the challenges in vehicle-roadside data access. Finally we conduct our experimental scenario, and simulation results show that our algorithm performs better than other existing algorithms by the comparison.  相似文献   

10.
Kim  Sungwook 《Wireless Networks》2019,25(4):1815-1827

The vehicular ad hoc network (VANET) has recently emerged as a promising networking technique attracting both the vehicular manufacturing industry and the academic community. Therefore, the design of next generation VANET management schemes becomes an important issue to satisfy the new demands. However, it is difficult to adapt traditional control approaches, which have already proven reliable in ad-hoc wireless networks, directly. In this study, we focus on the development of vehicular crowdsensing and routing algorithms in VANETs. The proposed scheme, which is based on reinforcement learning and game theory, is designed as novel vertical and horizontal game models, and provides an effective dual-plane control mechanism. In a vertical game, network agent and vehicles work together toward an appropriate crowdsensing process. In a horizontal game, vehicles select their best routing route for the VANET routing. Based on the decentralized, distributed manner, our dual-plane game paradigm captures the dynamics of the VANET system. Simulations and performance analysis verify the efficiency of the proposed scheme, showing that our approach can outperform existing schemes in terms of RSU’s task success ratio, normalized routing throughput, and end-to-end packet delay.

  相似文献   

11.
Routing in Vehicular Ad hoc Network (VANET) is a challenging task due to high mobility of vehicles. In this paper, a RVCloud routing protocol is proposed for VANET to send the data efficiently to the destination vehicle using cloud computing technology. In this protocol, vehicle beacon information is send to the cloud storage through the Road Side Unit (RSU). As vehicles have less storage and computing facility, the information of all the vehicles moving in the city is maintained by the cloud. Source vehicle sends the data to the destination by sending the data to the nearby RSU. After receiving the data, RSU sends a request to the cloud for an optimal RSU information, that takes minimum packet forwarding delay to send the data to the destination. Cloud provides location service by providing destination location and optimal RSU information. Then RSU sends the data to the optimal RSU using internet. By using the internet facility, packet forwarding delay and link disruption problem are reduced. Simulation results show that, RVCloud performs better than VehiCloud, P-GEDIR, GyTAR, A-STAR, and GSR routing protocols.  相似文献   

12.
As vehicular networks are gaining popularity, large number of vehicles want to take advantage of these networks, by utilizing the information they have, in order to take decision. Vehicle receives data from other vehicles or from the road side units (RSUs) available across the road. Since RSUs act as router to connect with the external world as well as it is a high capacity storage place where important data (e.g. data used in traffic safety, location dependent query, etc.) can be stored for download purpose for other vehicles moving through the service area. Since the RSUs have limited communication range and vehicles usually moves at very high speed in the service area, they have limited time to serve data to vehicles moving in the service area. For this purpose RSUs have to schedule data in such a way that maximum vehicles can get benefit from the data available with the RSUs. There are many algorithms proposed in the past to schedule data at RSUs. This paper proposes a mechanism to schedule data of those vehicles which are in the coverage range of the RSU. The proposed algorithm outperforms to serve requests whose deadline is about to expire i.e. vehicles which have left the service area after forwarding request to RSU. This scheme performs well in dense network and has good results in highway scenario.  相似文献   

13.
车载自组织网络中基于连接时长的RSU部署方案   总被引:1,自引:0,他引:1  
针对目前城市场景下车载自组织网络中的RSU部署问题,提出了一种基于连接时长的RSU部署方案.该方案在RSU数量受限的情况下,以保证通信连接时长为前提,以最大化服务车辆数目为目的,将部署问题建模成最大覆盖问题,设计了二进制粒子群算法进行求解,并结合真实的北京市路网地图和出租车GPS数据进行仿真实验.仿真结果表明,该算法是收敛、稳定及可行的,相比贪心算法,该算法求得的部署方案能为更多的车辆提供持续性的网络服务.  相似文献   

14.
随着智能交通系统(ITS)的建立,车载自组织网络(VANETs)在提高交通安全和效率方面发挥着重要的作用。由于车载自组织网络具有开放性和脆弱性特点,容易遭受各种安全威胁与攻击,这将阻碍其广泛应用。针对当前车载自组织网络传输中数据的认证性与完整性,以及车辆身份的隐私保护需求,该文提出一种智能车载自组织网络中的匿名在线注册与安全认证协议。协议让智能车辆在公开信道以匿名的方式向交通系统可信中心(TA)在线注册。可信中心证实智能车辆的真实身份后,无需搭建安全信道,在开放网络中颁发用于安全认证的签名私钥。车辆可以匿名发送实时交通信息到附近路边基站单元(RSU),并得到有效认证与完整性检测。该协议使得可信中心可以有效追踪因发送伪造信息引起交通事故的匿名车辆。协议可以让路边基站单元同时对多个匿名车辆发送的交通信息进行批量认证。该协议做了详细的安全性分析和性能分析。性能比较结果表明,该协议在智能车辆端的计算开销以及在路边基站单元端的通信开销都具有明显优势,而且无需搭建安全信道就能够实现匿名在线注册,因此可以安全高效地部署在智能车载自组织网络环境。  相似文献   

15.
Vehicular ad hoc networks (VANETs) have been a research focus in recent years. VANET’s main applications are enhancing road safety and reducing traffic accidents. Moreover, the VANET system can also reduce the time it takes for emergency vehicles to arrive at the accident location. The security of the transmission messages is of utmost importance, and to protect the transmission messages we propose a secure ambulance communication protocol for VANET to ensure that messages will not be revealed or stolen. The proposed scheme combines symmetric encryption, message authentication codes and digital signature mechanisms, and thereby achieves non-repudiation, availability, integrity, confidentiality, mutual authentication, session key security, known-key security and the ability to prevent known attacks. Finally, with NS2 simulation results that are based on realistic vehicle density statistics and the Taipei city road map, we argue that our secure ambulance communication protocol is effective in real VANET scenarios.  相似文献   

16.
As an indispensable part of intelligent transportation system (ITS), inter-vehicle communication (IVC) emerges as an important research topic. The inter-vehicle communication works based on vehicular ad hoc networking (VANET), and provides communications among different vehicles. The wide applications of VANET helps to improve driving safety with the help of traffic information updates. To ensure that messages can be delivered effectively, the security in VANET becomes a critical issue. Conventional security systems rely heavily on centralized infrastructure to perform security operations such as key assignment and management, which may not suit well for VANET due to its high mobility and ad hoc links. Some works suggested that vehicles should be connected to fixed devices such as road side units (RSUs), but this requires deployment of a large number of costly RSUs in a specific area. This paper is focused on the issues on decentralized IVC without fixed infrastructure and proposes a method for Dynamic Establishment of Secure Communications in VANET (DESCV), which works in particular well for VANET communication key management when centralistic infrastructure or RSU is not available. We will demonstrate through synergy analysis and simulations that DESCV performs well in providing secure communications among vehicles traveling at a relative velocity as high as 240 km/h.  相似文献   

17.
In vehicular ad-hoc networks (VANETs), vehicles perform a handover procedure in order to connect to the next RSU. In general, the handover procedure comprises two stages, namely searching for an appropriate road side unit (RSU) to connect to and performing an authentication procedure with the selected RSU. Since the vehicles in a VANET typically have a high mobility, frequent handover operations are required, and thus the transmission delay is inevitably increased. Accordingly, this paper proposes an authentication method designated as LIAP (Lightweight Identity Authentication Protocol) to reduce the handover authentication delay. LIAP employs a DSSP (Dynamic Session Secret Process) method to improve the speed and computational efficiency of the authentication process whilst simultaneously concealing the sensitive information of the vehicle. The security analysis results and performance evaluations show that LIAP not only provides an efficient and confidential authentication capability, but also preserves the robustness of the VANET toward malicious attacks.  相似文献   

18.
冯毅  葛宁  张陶冶 《电讯技术》2023,63(11):1651-1660
为了提升蜂窝车联网(Cellular Vehicle-to-Everything,C-V2X)资源复用的有效性和降低终端间的干扰,提出通过神经网络对未来时刻车流量的预测辅助无线资源管理方案。依据车载单元(On Board Unit,OBU)与路侧单元(Road Side Unit,RSU)间的车联网消息,获取RSU覆盖区域内各时刻的车流情况,分别采用BP(Back Propagation)神经网络和RBF(Radial Basis Function)神经网络进行短时交通流预测。RSU根据预测结果进行自适应分簇,簇间复用相同资源,簇内进行资源池的划分,RSU覆盖内的OBU在划分的资源池中选择发送资源,从而减少终端间的干扰,并保证热点区域车辆拥有更多的资源。仿真结果表明,在道路交通拥塞的场景下,所提方案的数据包接收率较标准中的方案提升14%,较典型文献方案提升10%,保证了通信的可靠性。  相似文献   

19.
Vehicular ad hoc networks (VANETs) are emergent concepts in terms of infrastructure‐less communication. The data dissemination is usually done using broadcast schemes. Data broadcast in VANETs is a challenging issue due to the high mobility vehicles and the varying density. On one hand, these vehicles have to share and disseminate the safety‐critical information, in real time, to other intended vehicles. On the other hand, the existing broadcast solutions do not succeed, till now, to fulfill VANETs requirements especially in terms of performance and QoS. In this paper, we propose a new QoS‐aware broadcast method in order to face VANETs communications challenges. We choose to adapt a concept originally devoted to mobile ad hoc networks (MANETs) and join it to other specific VANET techniques to introduce a new broadcasting protocol in the aim of optimizing QoS fulfilment. The proposed solution is fundamentally based on enhanced kinetic strategy assisted with fuzzy logic for QoS‐aware multipoint relay (MPR). The protocol efficiency is eventually tested through an experimental study and compared with existing methods. The results prove the over‐performance of the proposed solution.  相似文献   

20.
Vehicular ad hoc networks (VANETs) are expected in improving road safety and traffic conditions, in which security is essential. In VANETs, the authentication of the vehicular access control is a crucial security service for both inter‐vehicle and vehicle–roadside unit communications. Meanwhile, vehicles also have to be prevented from the misuse of the private information and the attacks on their privacy. There is a number of research work focusing on providing the anonymous authentication with preserved privacy in VANETs. In this paper, we specifically provide a survey on the privacy‐preserving authentication (PPA) schemes proposed for VANETs. We investigate and categorize the existing PPA schemes by their key cryptographies for authentication and the mechanisms for privacy preservation. We also provide a comparative study/summary of the advantages and disadvantages of the existing PPA schemes. Lastly, the open issues and future objectives are identified for PPA in VANETs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号