首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This work derives the average bit error rate (BER) of the uplink and downlink multicarrier code division multiple access (MC-CDMA) systems using maximum ratio combining (MRC) and equal gain combining (EGC) with synchronization errors over fading channels. The derived equation can simultaneously incorporate the parameters of the fading channel and all of the synchronization errors, including frequency offset, carrier phase jitter, and timing jitter. Numerical results indicate that those two combining schemes on the uplink and downlink MC-CDMA systems are degraded by all of the normalized synchronization errors over 10−2. The comparison outcomes between MRC and EGC reveal that the MRC generally outperforms EGC in the uplink MC-CDMA system. However, EGC achieves better performance when the number of users is small, the normalized synchronization errors are low and the signal to noise ratio (SNR) is high. In the downlink system, EGC mainly outperforms MRC when the SNR and the number of users are gradually increased and the normalized synchronization errors are low. Therefore, the selection of MRC or EGC depends on the SNR, the synchronization errors and the number of users in uplink and downlink MC-CDMA systems.  相似文献   

2.
In this paper, the performance of frequency synchronization in a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system is analyzed for the purpose of carrier frequency offset (CFO) estimation and compensation. Speci?cally, a joint transmit antenna selection (ST) and receive maximum ratio combining (MRC) (ST/MRC) method is adopted, that is, only one transmit antenna with the highest channel power is selected while MRC is used at the receiver to maximize the sum of frequency synchronization metric. The mean square error (MSE) closed-form expressions of CFO estimation are derived for several antenna con?gurations. Simulations in both ?at and multipath fading channels validate the theoretical analysis.  相似文献   

3.
In this paper, we investigate a multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (the TAS/MRC scheme). In this scheme, a single transmit antenna, which maximizes the total received signal power at the receiver, is selected for uncoded transmission. The closed-form outage probability of the system with transmit antenna selection is presented. The bit error rate (BER) of the TAS/MRC scheme is derived for binary phase-shift keying (BPSK) in flat Rayleigh fading channels. The BER analysis demonstrates that the TAS/MRC scheme can achieve a full diversity order at high signal-to-noise ratios (SNRs), as if all the transmit antennas were used. The average SNR gain of the TAS/MRC is quantified and compared with those of uncoded receiver MRC and space-time block codes (STBCs). The analytical results are verified by simulation. It is shown that the TAS/MRC scheme outperforms some more complex space-time codes of the same spectral efficiency. The cost of the improved performance is a low-rate feedback channel. We also show that channel estimation errors based on pilot symbols have no impact on the diversity order over quasi-static fading channels.  相似文献   

4.
针对时分多址(Time Division Multiple Access,TDMA)信号提出了宽范围的载波同步译码联合迭代处理的方案。该方案主要分为三个部分,首先利用TDMA信号的同步码进行数据辅助同步,对信号中的大频偏和相偏进行粗估计和纠正;然后利用线性调频Z变换(Chirp-Z Transform,CZT)算法针对整突发帧进行非数据辅助同步,精确估计和纠正信号的剩余频偏;最后通过利用译码器输出的软信息进行编码辅助同步,多次迭代得到剩余相偏的精确估计,最终实现载波的精确同步并输出译码结果。实验结果表明,所提方案具有同步捕获范围宽、参数估计精度高、译码输出误比特率低等优点,在低信噪比环境下也能表现出优良性能。  相似文献   

5.
Joint frame synchronization and frequency offset estimation in OFDM systems   总被引:3,自引:0,他引:3  
A new joint frame synchronization and carrier frequency offset estimation scheme in orthogonal frequency division multiplexing (OFDM) systems is proposed in this paper, where both frame synchronization and carrier frequency offset estimation can be performed by using only ONE training symbol. Frame synchronization and carrier frequency offset acquisition are performed simultaneously in the proposed scheme. Reliable frame synchronization is obtained in the proposed scheme even in low SNR. The maximum carrier frequency offset acquisition range of the proposed scheme can be up to one half of the total signal bandwidth. The same training symbol can also be utilized to carrier frequency offset Fine Adjustment, which estimates the remaining carrier frequency offset after acquisition with higher accuracy. The performance comparison of the proposed Fine Adjustment algorithm and Schmidl's algorithm by using computer simulation illustrates and verify the superior performance of the proposed algorithm with regard to estimation accuracy.  相似文献   

6.
Orthogonal frequency division multiplexing (OFDM) transforms frequency-selective channels into multiple low-rate flat-fading subchannels. Carrier frequency offset between transmitter and receiver local oscillators must be estimated and compensated at the receiver to maintain orthogonality of these subchannels. In this paper, we derive the nonlinear least squares (NLS) estimator for carrier frequency synchronization that exploits receiver diversity and known OFDM signal subspace structure due to the placement of unmodulated (virtual) subcarriers. The resulting estimator benefits from the high-resolution subspace method without the computational overhead associated with subspace decomposition. Fundamental estimator performance relationships against parameters such as signal-to-noise ratio (SNR), frequency-selective fading, and diversity branch correlation are derived. In particular, we derive the Cramer-Rao bound (CRB) for the mean square error (MSE) of the carrier frequency offset estimator. Numerical studies are presented to verify the results.  相似文献   

7.
肖啸  朱光喜 《通信学报》2007,28(3):78-84
为了提高系统性能并降低接收端(移动台)的硬件复杂度,提出一种新的MIMO传输技术。即在发射端(基站)按最大比发射(MRT,maximal-ratio transmit)技术,接收端则基于信噪比最大的原则仅选择一根接收天线来处理信号,记作MRT/RAS(maximal-ratio transmit/receiver antenna selection)。根据随机矩阵和排序统计的最新理论,推导出瑞利衰落信道下MRT/RAS系统的中断概率、误码率(BER)等性能指标的确切表达式。仿真结果表明MRT/RAS系统可以取得很好的阵列增益及满分集增益。相同频谱条件下,性能超过某些复杂的空时编码系统。而且在准静态衰落信道下,信道估计错误对取得的分集阶数并没有影响。仿真试验也证明了分析结果的正确性。  相似文献   

8.
卫星移动通信中信号受到多普勒效应和阴影衰落效应的影响,导致信号变化快且很微弱,对系统接收性能影响很大.提出一种用于卫星移动通信终端下行链路时频同步新算法.根据本地扫频信号与接收Chirp信号相关后峰值频率变化规律来进行定时捕获,同时实现了频偏估计.通过仿真和分析,给出了不同信噪比环境下,利用Chirp信号进行定时捕获和频偏估计的性能.结果表明,在阴影衰落导致的信噪比很低和高速移动导致的多普勒频偏的情况下,定时捕获性能优越,频偏估计性能很好地满足系统要求.  相似文献   

9.
在平坦的瑞利衰落信道中,通过分析一种简单的双发射天线分集方案(即Alamouti编码方案,简称ACS)接收信号的统计特性和输出信噪比.在多相相移键控调制下,推导了该方案的传输比特误码率的一般理论分析式,证明了采用ACS技术的移动通信系统与采用2分集阶的最大比率合并接收分集技术的误码性能相同.Monte-Carlo仿真结果也验证此结论.这一理论成果可推广到采用正交空时分组码的多天线发射分集系统.  相似文献   

10.
In this paper, we present a comprehensive capacity analysis of the downlink of multiuser diversity (MD) systems with adaptive transmission over Rayleigh fading channels. First, the exact capacity of the single‐input single‐output (SISO) systems with MD and adaptive transmission technique is derived. The optimal power allocation scheme for such a system is shown to be a water‐filling algorithm. Next, we derive the exact closed‐form capacity expressions for different multiple‐input multiple‐output (MIMO) schemes, including the selective combining (SC), maximum ratio combining (MRC) and space‐time block codes (STBC). In order to avoid the cumbersome numerical root finding techniques in solving the optimal cutoff SNR level below which the channel is not used, we also provide the approximate expressions for the cutoff level. For the MD MIMO systems, it is observed that the optimal power allocation strategy is to focus transmit power on a single transmit antenna (e.g. Tx‐MRC/Rx‐MRC scheme) or selecting the best transmit antennas (e.g. Tx‐SC/Rx‐MRC scheme). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
为降低3GPP 长期演进(LTE)上行多天线系统分集接收计算复杂度,提高硬件处理效率,改善系统性能,对八天线系统不同干扰强度情况下的干扰抑制合并(IRC)、最大比合并(MRC)、简化的干扰抑制合并(SIRC)和简化的最大比合并(SMRC)算法进行了比较与仿真分析。仿真结果表明在八天线系统中SIRC能够以1dB左右的信噪比损失获得8N倍运算量的降低,并能采用划分天线子阵的方法来提高效率。当存在较强的相关干扰时利用SIRC代替IRC,当干扰较弱或无相关干扰时利用SMRC代替MRC进行分集接收合并,不仅能够明显降低运算量,并能获得较好的效果。  相似文献   

12.
A new carrier frequency offset estimation scheme in orthogonal frequency-division multiplexing (OFDM) system is proposed. The carrier frequency offset estimation includes acquisition and tracking, and the acquisition range is as large as one half of overall signal bandwidth. The proposed tracking estimator is a maximum-likelihood estimator, and in AWGN channel, the Cramer-Rao lower bound is met at high signal-to-noise ratio (SNR); in multipath channel, the tracking algorithm works well at moderate SNR. Timing synchronization can be also performed during the course of acquisition.  相似文献   

13.
This paper analyzes the performance of opportunistic relay under aggregate power constraint in Decode-and-Forward (DF) relay networks over independent, non-identical, Nakagami-m fading channels, assuming multiple antennas are available at the relay node. According to whether instantaneous Signal-to-Noise Ratio (SNR) or average SNR can be exploited for relay selection, two opportunistic relay schemes, opportunistic multi-antenna relay selection (OMRS) and average best relay selection (ABRS) are proposed. The closed form expressions of outage probability and error performance for binary phase shift keying (BPSK) modulation of OMRS and ABRS are determined using the moment generating function (MGF) of the total signal-to-noise ratio (SNR) at the destination. Simulations are provided to verify the correctness of theoretical analysis. It is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and approaches the Beamforming (BF) scheme known as theoretical outage-optimal very closely. Compared with previous single-antenna Opportunistic Relaying (OR) scheme, OMRS brings remarkable performance improvement obtained from maximum ratio combining (MRC) and beamforming, which proves that multiple antennas at the relays could provide more array gain and diversity order. It also shows that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.  相似文献   

14.
ABSTRACT

With the development of the maritime transportation industry, the number of ships is increasing and the ships are becoming more intelligent. Due to the rapid development of maritime communication, the demand for communication spectrum is increasing. Therefore, the maritime cognitive radio (CR) system is an effective solution. Because of the multipath fading caused by sea surface and atmosphere has a more serious influence on communication signals, which increases the instability of the signal reception, the spectrum sensing technology in maritime cognitive radio is more challenging than the spectrum sensing on land. In order to solve this problem, a cyclostationary detection algorithm for multiple antennas in fading model is proposed. A maximum ratio combining algorithm based on optimal weight correlation value (OWCV-MRC) is proposed for the diversity gain and system performance degradation caused by diversity technology on multipath fading channels. The algorithm uses the correlation values of the attenuation gains on the two different branches as the weighting coefficients of each branch, thus improving the coefficient matrix in the maximum ratio combining (MRC) algorithm. The simulation results show that the proposed algorithm can effectively detect the target signal in the fading channel with ultra-low signal to noise ratio (SNR).  相似文献   

15.
Low density parity check (LDPC) codes have shown exceptionally good performance for single antenna systems over a wide class of channels. LDPC when implemented with a single input multiple output system with maximum ratio combining is optimum from the standpoint of maximising signal-to-noise ratio at combiner output without the presence of interferer. Optimum combining outperforms maximal ratio combining (MRC) in the presence of interferer(s). In this article, the performance of the LDPC codes with multiple receiver antennas with optimum combining in the presence of single interferer is investigated. The simulation results showed that LDPC codes of irregular construction are able to give high coding and diversity gain with optimum combining. The proposed LDPC optimum combined (LDPC–OC) system in Rayleigh fading channel in the presence of a single interferer improves the signal to interferer plus noise ratio by 2.62 dB with four receiver antennas and by 1.98 dB when the number of receiver antennas is three.  相似文献   

16.
IEEE 802.11n MIMO-OFDM无线局域网系统的定时与频率同步   总被引:1,自引:0,他引:1  
本文提出了一种针对基于IEEE 802.11n标准的MIMO-OFDM无线局域网系统的定时与频率同步方案。本文提出的同步算法基于训练序列。该算法充分利用多天线分集,使同步算法的MSE性能得到显著的改进。仿真表明本文提出的同步方案在低信噪比条件下仍具有良好的性能,并且能够有效地对抗瑞利衰落信道的影响。  相似文献   

17.
We develop robust mean-square error (MSE)-optimal training signal designs for multiple-input multiple-output orthogonal frequency-division multiplexing channel estimation with frequency offset and phase noise (PN), and present analytical and simulation results for the frequency-offset and PN effects on channel estimation. The proposed designs are more advantageous for moderate-to-high values of signal-to-noise ratio (SNR), residual frequency offset, and PN level. At SNR = 10 dB, the normalized MSE reductions of our proposed training signals at normalized frequency offset$vert vvert=0.1,0.5$are about 9 and 19 dB, respectively, for one transmit antenna, and 6 and 11 dB for two transmit antennas.  相似文献   

18.
This paper analyzes the performance of systems with dual-polarized antennas in correlated Nakagami-m fading channels as a function of envelope correlation and cross-polarization discrimination by means of the characteristic function of the instantaneous post-maximal ratio combining (MRC) signal-to-noise ratio (SNR). Systems of interest include systems with receive polarization diversity and systems with transmit and receive polarization diversity employing Alamouti space-time code. The expressions for the average symbol error probability as a function of SNR assuming no power control, and the expressions for the average required transmit power to achieve the constant desired post-MRC SNR assuming perfect fast power control, are derived. Finally, a comparison between analytical and simulation results is used to validate the analysis.  相似文献   

19.
This paper presents the theory and practice of a new advanced modem technology suitable for high-data-rate wireless communications and presents its performance over a frequency-flat Rayleigh fading channel. The new technology is based on space-time coded modulation (STCM) with multiple transmit and/or multiple receive antennas and orthogonal pilot sequence insertion (O-PSI). In this approach, data is encoded by a space-time (ST) channel encoder and the output of the encoder is split into N streams to be simultaneously transmitted using N transmit antennas. The transmitter inserts periodic orthogonal pilot sequences in each of the simultaneously transmitted bursts. The receiver uses those pilot sequences to estimate the fading channel. When combined with an appropriately designed interpolation filter, accurate channel state information (CSI) can be estimated for the decoding process. Simulation results of the proposed modem, as applied to the IS-136 cellular standard, are presented. We present the frame error rate (FER) performance results as a function of the signal-to-noise ratio (SNR) and the maximum Doppler frequency, in the presence of timing and frequency offset errors. Simulation results show that for a 10% FER, a 32-state eight-phase-shift keyed (8-PSK) ST code with two transmit and two receive antennas can support data rates up to 55.8 kb/s on a 30-kHz channel, at an SNR of 11.7 dB and a maximum Doppler frequency of 180 Hz. Simulation results for other codes and other channel conditions are also provided. We also compare the performance of the proposed STCM scheme with delay diversity schemes and conclude that STCM can provide significant SNR improvement over simple delay diversity  相似文献   

20.
This article studies the closed-form expressions of outage performance for opportunistic relay under aggregate power constraint in decode-and-forward(DF)relay networks over Rayleigh fading channels,assuming that multiple antennas are available at the relay node.According to whether instantaneous signal-to-noise ratio(SNR)or average SNR can be utilized for relay selection,two opportunistic relay schemes,opportunistic multi-antenna relay selection(OMRS)and average best relay selection(ABRS)are proposed.The performances of both two schemes are evaluated by means of theoretical analysis and simulation.It is observed that OMRS is outage-optimal among multi-antenna relay selection schemes and closely approaches the beamforming(BF)scheme known as theoretical outage-optimal.Compared with previous single-antenna opportunistic relaying(OR)scheme,OMRS brings remarkable performance improvement,which is obtained from maximum ratio combining(MRC)and beamforming techniques.It is also shown that the performance of ABRS in asymmetric channels is close to OMRS in the low and median SNR range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号