首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Spark‐plasma‐sintered lead vanadate iodoapatite Pb9.85(VO4)6I1.7, a promising nuclear waste form for the immobilization of I‐129, was irradiated with energetic ions, electrons, and gamma rays, to investigate its radiation stability. In situ TEM observation of the 1 MeV Kr2+ irradiation shows that lead vanadate iodoapatite generally exhibits higher tolerance against ion irradiation‐induced amorphization than lead vanadate fluorapatite, and the spark plasma sintering can further enhance its radiation stability attributed to the enhanced crystallinity, reduced defect concentration, and denser microstructure. The critical amorphization dose and critical temperature for the SPS‐densified iodoapatite at 700°C are determined to be 0.25 dpa at room temperature and 230°C, respectively. No significant phase transformation or microstructural damage occurred under energetic electron and gamma irradiations. Raman spectra of gamma‐ray‐irradiated iodoapatite indicate improved V–O bond order at 500 kGy dose. Generally, the spark‐plasma‐sintered iodoapatite exhibits excellent radiation stability for nuclear waste form applications. The significantly enhanced radiation stability of the SPS‐densified iodoapatite suggests that SPS holds great promise for fabricating iodoapatite waste form with minimum iodine loss and optimized radiation tolerance for effective management of highly volatile I‐129.  相似文献   

2.
Glass-ceramics are possible host matrix for high level waste immobilization. The Gd2Zr2O7 glass-ceramic matrix was successfully synthesized using spark plasma sintering (SPS) method in 5 minutes. The phase transition with sintering temperature was studied using X-ray diffraction, Raman and transmission electron microscopy. It revealed that samples kept a main defected fluorite phase as being sintered below 1800°C. Glass phase increased rapidly beyond 1850°C. The amorphous structure became the main body at 1900°C, with nanoscale crystal scattered in the bulk. With the increase of glass phase, the grain boundary became almost indistinguishable. The relationship between the final phase of Gd2Zr2O7 with its synthetic temperature range and corresponding technology was reviewed. Gd2Zr2O7 glass-ceramics could be acquired by extending the sintering temperature beyond 1850°C using SPS method.  相似文献   

3.
Defect perovskites, a category of air and moisture stable perovskite molecular salts, have gained attention for photovoltaics in the search of alternatives to the organic lead‐based photovoltaics which show exceptional photovoltaic performance but suffer significant environmental instability and toxicity of Pb. Defect perovskites also have exceptional structural flexibility and diverse crystal chemistry, and thus, display potentials as host phases for incorporating high amounts of halides such as iodine and chorine. In this study, pure Cs2SnCl6, a lead‐free defect perovskite variant, was synthesized through a solution‐based route that produced particles ranging from 200 to 500 nm. The thermal stability of the as‐synthesized Cs2SnCl6 powders was investigated using thermogravimetric analysis (TGA), demonstrating stability up to 615°C, above which a phase decomposition occurs leading to the loss of constituent component of SnCl4. Consolidation of Cs2SnCl6 into dense pellets (≥94% theoretical density) was achieved via spark plasma sintering (SPS) at a low sintering temperature of 350°C. X‐ray diffraction confirms no phase decomposition in the SPS‐densified perovskite pellets as a result of rapid consolidation of the SPS sintering at a short duration and lower temperature, and the TGA analysis suggest a comparable thermal stability up to 627°C for the densified pellet, slightly better than the as‐synthesized powders. The thermal diffusivity of Cs2SnCl6 at room temperature was determined as 0.388 mm2·s?1 by laser flash measurement. This work further discussed the potential applications of the SPS‐densified Cs2SnCl6 beyond perovskite photovoltaics, introducing potential nuclear separations and waste forms for chlorine.  相似文献   

4.
Nanocrystalline UO2+x powders are prepared by high‐energy ball milling and subsequently consolidated into dense fuel pellets (>95% of theoretical density) under high pressure (750 MPa) by spark plasma sintering at low sintering temperatures (600°C‐700°C). The grain size achieved in the dense nano‐ceramic pellets varies within 60‐160 nm as controlled by sintering temperature and duration. The sintered fuel pellets are single phase UO2+x with hyper‐stoichiometric compositions as derived by X‐ray diffraction, and micro‐Raman measurements indicate that random oxygen interstitials and Willis clusters dominate the single phase nano‐sized oxide pellets of UO2.03 and UO2.11, respectively. The thermal conductivities of the densified nano‐sized oxide fuel pellets are measured by laser flash, and the fuel stoichiometry displays a dominant effect in controlling thermal transport properties. A reduction in thermal conductivity is also observed for the dense nano‐sized pellets as compared with micron‐sized counterparts reported in the literature. The correlation among the SPS sintering parameters—microstructure control—properties is established, and the nano‐sized UO2+x pellets with controlled microstructure can serve as the model systems for fundamental understandings of fuel behaviors and obtaining critical experimental data for multi‐physics MARMOT model validation.  相似文献   

5.
For the first time we have demonstrated the densification of high‐purity nanostructured (davg ≈ 60 nm) tungsten carbide by High Pressure Spark Plasma Sintering (HPSPS) in the unusually low temperature range of 1200°C–1400°C. The high‐pressure sintering (i.e., 300 MPa) produced dense material at a temperature as low as 1400°C. In comparison with more conventional sintering techniques, such as SPS (80 MPa) or hot isostatic pressing, HPSPS lowered the temperature required for full densification by 400°C–500°C. High Pressure Spark Plasma Sintering, even in absence of any sintering aid or grain growth inhibitor, retained a very fine microstructure resulting in a significant improvement in both hardness (2721 HV10) and fracture toughness (7.2 MPa m1/2).  相似文献   

6.
Bulk niobium diboride ceramics were consolidated by spark plasma sintering (SPS) at 1900°C. SPS resulted in dense specimens with a density of 98% of the theoretical density and a mean grain size of 6 μm. During the SPS consolidation, the hexagonal boron nitride (h‐BN) was formed from B2O3 on the powder particle surface and residual adsorbed nitrogen in the raw diboride powder. The room‐temperature strength of these NbB2 bulks was 420 MPa. The flexural strength of the NbB2 ceramics remained unchanged up to 1600°C. At 1700°C an increase in strength to 450 MPa was observed, which was accompanied by the disappearance of the secondary h‐BN phase. Finally, at 1800°C signs of plastic deformation were observed. Fractographic analysis revealed a number of etching pits and steplike surfaces suggestive of high‐temperature deformation. The temperature dependence of the flexural strength of NbB2 bulks prepared by SPS was compared with data for monolithic TiB2, HfB2 and ZrB2. Our analysis suggested that the thermal stresses accumulated during SPS consolidation may lead to additional strengthening at elevated temperatures.  相似文献   

7.
《Ceramics International》2016,42(6):6707-6712
In this paper, the sintering behavior of β-Si6−zAlzOzN8−z (z=1) powder prepared by combustion synthesis (CS) was studied using spark plasma sintering (SPS). The CSed powder was ball milled for various durations from 0.5 to 20 h and was then sintered at different temperatures with heating rates varying from 30 °C/min to 200 °C/min. The effects of ball milling, sintering temperature, and heating rate on sinterability, final microstructure, and mechanical property were investigated. A long period of ball milling reduced the particle size and subsequently accelerated the sintering process. However, the fine powder was easily agglomerated to form secondary particles, which accordingly decreased the densification of the SPS product. The high sintering temperature accelerated the densification process, whereas the high heating rate reduced the grain growth and increased the relative density of the sintered product.  相似文献   

8.
Cerium dioxide (CeO2) was densified by conventional and field assisted sintering techniques in order to examine the effect of a range of sintering parameters on the resultant pellet microstructure, namely: temperature, hold time, atmosphere, electric field strength and polarity. CS at 1400 °C for 2 h in static air atmospheres provided the highest densities and grain sizes compared with an argon atmosphere, due to the retention of near stoichiometry maintaining sintering kinetics. SPS produced dense ceramics at similar sintering temperatures (1300 °C), but with greatly reduced sintering hold (5 min) and cycle times. However, microstructural inhomogeneity arose from the direct current polarity which led to oxygen ion diffusion toward the positive electrode. FS was performed with an alternating current electric field and produces samples of comparable density at sintering temperatures of ~1100 °C for a hold time of around 1 h with no inhomogeneity due to the alternating current employed.  相似文献   

9.
High-entropy ceramics (HEC) with a fixed composition of (VNbTaMoW)C5 were prepared by spark plasma sintering (SPS) from 1500 °C to 2200 °C. XRD, TEM, HRTEM, SAED and EDX were used to investigate effects of the sintering temperatures on compositional homogeneity, constituent phases and microstructure of the HECs. The results showed that single-phase HEC formed at a temperature as low as 1600 °C while ultimate elemental distribution homogeneity could be obtained at 2200 °C. Elemental distribution homogenization was accompanied by microstructural coarsening and oxide impurities aggregating at grain boundaries as temperature increased. SPS at 1900 °C for 12 min could yield uniform HECs (VNbTaMoW)C5 with Vickers hardness, nanohardness, fracture toughness and Young’s modulus reaching 19.6 GPa, 29.7 GPa, 5.4 MPa m1/2 and 551 GPa, respectively. The resultant HECs showed excellent wear resistance when coupled with WC at room temperature.  相似文献   

10.
Commercial nanocrystalline yttrium aluminum garnet (nc-YAG) powders were used for fabrication of dense and transparent YAG by spark plasma sintering (SPS). Spherical 34 nm size particles were densified by SPS between 1200 and 1500 °C using 50 and 100 MPa pressures for 3, 6, and 9 min durations. Fully dense and transparent polycrystalline cubic YAG with micrometer grain size were fabricated at very moderate SPS conditions, i.e. 1375 °C, 100 MPa for 3 min. Increase in the SPS duration and pressure significantly increased the density especially at the lower temperature range. The observed microstructure is in agreement with densification by nano-grain rotation and sliding at lower densities, followed by curvature driven grain boundary migration and normal grain growth at higher densities. Residual nanosize pores at the grain boundary junctions are an inherent microstructure feature due to the SPS process.  相似文献   

11.
In this study, dense SiC ceramics were fabricated at 1650?1750 °C for 10?60 min by spark plasma sintering (SPS) using 3?10 wt.% Al2O3-Y2O3 as sintering additives. Effects of sintering temperature, sintering additive content and holding time on microstructure as well as correlations between microstructure and thermal conductivity were investigated. An increase in the sintering temperature promotes grain growth. Extending holding time has little influence on grain size but results in formation of continuous network of sintering additive, which increases interfacial thermal resistance and thus decreases thermal conductivity. For SiC ceramics composed of continuous SiC matrix and discrete secondary phase (yttrium aluminum garnet, YAG), an increase in the sintering additive content results in smaller grain size and lower thermal conductivity. The lower thermal conductivity of the SiC ceramic with higher sintering additive content is mainly due to the smaller grain size rather than the low intrinsic thermal conductivity of YAG.  相似文献   

12.
n-Type Ca0.9Yb0.1MnO3?δ thermoelectric (TE) powders were prepared by solid state synthesis (SSS) and co-precipitation method (Cop). The bulk TE materials were consolidated using conventional sintering (CS) and spark plasma sintering (SPS) respectively. The shrinkage behavior, as well as the sample densification strongly depends on the starting particle size. Consequently, the bulk samples from normal powder (SSS) and nano-powder (Cop) were prepared with similar density by using different sintering temperatures, of 1400 °C and 1200 °C, then 1200 and 950 °C for CS and SPS respectively. Such a decrease (up to 200 °C) of the sintering temperature is a consequent progress in terms of engineering for applications. Another advantage of the co-precipitation process compared to the conventional solid state synthesis is that, due to the small particle sizes and the decreased sintering temperature, grain growth was limited and TE properties were enhanced. The interest of the SPS process was also evidenced and we are presenting here the structural and microstructural investigations. In addition, the thermoelectric properties of samples prepared with two different processes were studied with the figure of merit of 0.18 at 750 °C.  相似文献   

13.
Nuclear fuel undergoes a significant restructuration during its lifetime in the nuclear reactor. Especially at the rim of the pellet, large UO2 grains disintegrate into a nanosized material. In this paper, we focus on the preparation of bulk UO2 with grain sizes below 100 nm to investigate the physico‐chemical properties of this so‐called “high burn up structure” (HBS). Preparation of bulk nanocrystalline materials is a challenge that can be overcome using the high‐pressure spark plasma sintering (HP SPS) technique. In‐house developed HP SPS with 500 MPa applied pressure was used for compaction of 11 nm UO2 powder obtained by oxalate conversion. The procedure yielded dense (>90%) compacts with grain size as low as 34 nm for samples sintered at 800°C.  相似文献   

14.
A high-pressure FAST/Spark Plasma Sintering method was used to produce dense SrTiO3 ceramics at temperatures of 1050 °C, more than 250 °C below typical sintering temperatures. Combining SPS with solid-state reactive sintering further improves densification. The process resulted in fine-grained microstructures with grain sizes of ∼300 nm. STEM-EDS was utilized for analyzing cationic segregation at grain boundaries, revealing no cationic segregation at the GBs after SPS. Electrochemical impedance spectroscopy indicates the presence of a space charge layer. Space charge thicknesses were calculated according to the plate capacitor equation and the Mott-Schottky model. They fit the expected size range, yet the corresponding space charge potentials are lower than typical values of conventionally processed SrTiO3. The low space charge potential was associated to low cationic GB segregation after SPS and likely results in better grain boundary conductivity. The findings offer a path to tailor grain boundary segregation and conductivity in perovskite ceramics.  相似文献   

15.
Pressure‐less spark plasma sintering (SPS) is a new approach during which rapid densification of ceramic nanopowder green bodies is accompanied by rapid grain growth. Although the origin of this phenomenon has not yet been fully understood significant, difference in grain growth between pressure‐less and pressure‐assisted SPS was expected. In this work 3Y‐TZP nanopowder with average particle size of 12 nm was consolidated using two‐step approach: (1) at an intermediate temperature (600°C to 1000°C) SPS warm pressing followed by (2) high temperature (1400°C to 1600°C) pressure‐less SPS. The standard one step pressure‐assisted SPS experiments were quoted as references. Rapid grain growth was observed during both pressure‐less and standard SPS. The samples prepared by both approaches at the same sintering temperature (1400°C–1600°C) achieved identical grain size and grain size distribution, if large pores were eliminated in early stage by SPS warm pressing. The electric current, electromagnetic field, and mechanical pressure is proven to have a negligible direct influence on grain growth in 3Y‐TZP ceramics at temperatures above 1000°C under standard SPS conditions.  相似文献   

16.
BaZr0.9Y0.1O3‐δ has been synthesised by three different methods: the solid‐state reaction, the spray pyrolysis and the spray drying. Significantly different apparent lattice parameters (between 0.4192 nm for the sample prepared by the solid‐state reaction method and sintered at 1,500 °C and 0.4206 nm for the sample prepared by the solid‐state reaction method and sintered at 1,720 °C) are observed after calcination and sintering, depending on the synthesis method and the sintering temperature. The bulk conductivity values also vary over several orders of magnitude (–7.2< log σb <–3.6 at 300 °C) depending on the synthesis method and the sintering temperature. These variations of the bulk conductivity and also the activation energy are correlated with variations of the apparent lattice parameter. The influence of the preparation method on the electrical properties is discussed. The grain boundaries are more resistive than the bulk. The variation of the grain boundary conductivity could be correlated to the microstructure in terms of the grain size.  相似文献   

17.
In this study we explored the densification, microstructure evolution, and high-temperature properties of bulk lanthanum hexaboride. LaB6 bulks were consolidated using spark-plasma sintering only in the temperature range between 1400°C and 1700°C. We adopted flash spark plasma sintering (SPS) of LaB6 using a direct current heating without a graphite die. We observed a peculiar grain-size gradient when coarse grains exceeding 300 μm were observed on the top side of the specimen, while the bottom side had a grain size of 15–20 μm. Such large grain was not observed using SPS at 2000°C, suggesting that these might originate from a local overheating. Based on the three-point flexural tests, it was observed that the toughness and strength of the LaB6 were acceptable at room-temperature (3.1 ± 0.2 MPa m1/2, 300 ± 20 MPa). However, at 1600°C, these parameters would decrease to 1.3 ± 0.1 MPa m1/2 and 120 ± 40 MPa, respectively.  相似文献   

18.
《Ceramics International》2015,41(8):9692-9700
Spark plasma sintering followed by hot isostatic pressing was applied for preparation of polycrystalline alumina with submicron grain size. The effect of additives known to influence both densification and grain growth of alumina, such as MgO, ZrO2 and Y2O3 on microstructure development was studied. In the reference undoped alumina the SPS resulted in some microstructure refinement in comparison to conventionally sintered materials. Relative density >99% was achieved at temperatures >1200 °C, but high temperatures led to rapid grain growth. Addition of 500 ppm of MgO, ZrO2 and Y2O3 led, under the same sintering conditions, to microstructure refinement, but inhibited densification. Doped materials with mean grain size <400 nm were prepared, but the relative density did not exceed 97.9%. Subsequent hot isostatic pressing (HIP) at 1200 and 1250 °C led to quick attainment of full density followed by rapid grain growth. The temperature of 1250 °C was required for complete densification of Y2O3 and ZrO2-doped polycrystalline alumina by HIP (relative density >99.8%), and resulted in fully dense opaque materials with mean grain size<500 nm.  相似文献   

19.
The effects produced by annealing Y2O3 nanopowders on their spark plasma sintering (SPS) behavior are systematically investigated in this work. It is found that the annealed powders display higher sinterability with respect to the as‐received ones. Indeed, the maximum densification level reached from pristine powders is about 97.5%, whereas density decreases when further increasing either the sintering temperature or the dwell time. In contrast, the density of SPS products obtained from pretreated powder monotonically increases with temperature and processing time, thus leading to fully dense materials in 30 min at 1050°C and 60 MPa. Correspondingly, it is found that the annealing treatment markedly inhibits grain coarsening during SPS. Thus, dense translucent samples with grain size below 100 nm can be attained from annealed powders. On the other hand, white‐opaque specimens with significantly coarser microstructures (up to 1‐μm‐sized grains) are obtained when pristine powders are directly processed under the same sintering conditions. Furthermore, it is observed that the annealing treatment of SPS samples in air allows for graphite contamination removal, whereas no improvement in term of light transmittance is produced.  相似文献   

20.
Scandium-substituted NASICON (Na3.4Sc0.4Zr1.6Si2PO12) is a promising electrolyte material for sodium-ion solid state batteries, with the highest ionic conductivity reported to date for a NASICON material. Low-temperature densification and control of microstructure are important factors to enable the low-cost manufacturing of such new battery type. Non-conventional sintering techniques such as Field Assisted Sintering Technology / Spark Plasma Sintering (FAST/SPS) and Cold Sintering are therefore investigated and compared to conventional free sintering. FAST/SPS enables to get rapidly dense samples (99% TD) at lower temperatures than the ones required by conventional sintering routes and with similar electrical properties. Cold sintering experiments, involving the addition of aqueous solutions as sintering aids and high mechanical pressure, enable a moderate densification, but at temperatures as low as 250 °C. Further heat treatments still below the conventional sintering temperature increased the achieved density and ionic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号