首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(15):21671-21675
Optical fibers have been formed by replacing precursor glass core with precursor ceramic core, in which drawing process, the precursor ceramic melted to fill the space of the core region while the clad glass was softened. Nd3+ doped LaNbO4 nanocrystals were precipitated in the core after heat treatment. X-ray diffraction, Raman spectra, high-resolution transmission electron microscopy, electron paramagnetic resonance, optical microscope, and photoluminescence were used to characterize the obtained fiber. No crystallization, cracking, bubble, or undissolved substance is observed in the core region of precursor fiber. Nd3+ doped LaNbO4 nanocrystals are precipitated in the core region after thermal treatment. Under the pumping source of 808 nm, three emission bands located at ~887 nm, ~1064 nm, and ~1337 nm are observed, which makes this GC fiber a promising material for the NIR fiber amplifier.  相似文献   

2.
It is well recognized that a widely wavelength‐tunable mid‐infrared (MIR) fiber laser plays an important role in the development of compact and efficient coherent sources in the MIR range. Herein, the optimizing Er/Ho ratio for enhancement of broadband tunable MIR emission covering 2.6‐2.95 μm in the Er3+/Ho3+‐codoped transparent borosilicate glass‐ceramic (GC) fibers containing NaYF4 nanocrystals under 980 nm excitation was investigated. Specifically, the obtained GC fibers with controllable crystallization and well fsd‐maintained structures were prepared by the novel melt‐in‐tube approach. Owing to the effective energy transfer between Er3+ and Ho3+ after crystallization, the 2.7 μm MIR emission was obviously enhanced and the emission region showed a notable extension from 2.6‐2.82 μm to 2.6‐2.95 μm after the addition of Ho3+. Importantly, we conducted a theoretical simulation and calculation related to the MIR laser performance, signifying that the GC fiber may be a promising candidate for MIR fiber laser. Furthermore, the melt‐in‐tube approach will provide a versatile strategy for the preparation of diverse optical functional GC fibers.  相似文献   

3.
Bismuth‐doped multicomponent optical fiber was fabricated by a melt‐in‐tube method. The fiber was prepared at drawing temperature where the clad was softened, while the fiber core glass was melted. The obtained fiber was characterized by electroprobe microanalyzer and X‐ray diffraction. No obvious precipitation of crystals or bismuth metals was observed in the fiber. Excited by 808‐nm laser, intense broadband near‐infrared emission with full width at half maximum of about 325 nm was observed from the fiber. Consequently, this fiber is promising for broadband fiber amplification. The melt‐in‐tube method is generally applicable for fabricating bismuth‐doped multicomponent optical fiber.  相似文献   

4.
Demands are increasing for ultrashort pulse laser in industrial applications, where the gain bandwidth of most optical fiber material is not wide enough, and developing a wide bandwidth gain medium is challenging. Glass–ceramic fibers containing Nd3+/Yb3+ co-doped YCa4O(BO3)3 nanocrystals were fabricated by the molten core method and successive heat treatment. After a careful heat treatment, Nd3+/Yb3+ co-doped YCa4O(BO3)3 nanocrystals were precipitated in the fiber core. Enhanced broadband near-infrared (NIR) emission from 850 to 1150 nm (bandwidth: ∼252 nm) was obtained in the glass–ceramic fiber compared to that of precursor fiber. These results suggest that the Nd3+/Yb3+ glass–ceramic fibers are promising for broadband NIR optical amplifications and lasers.  相似文献   

5.
This paper describes the preparation of a transparent glass‐ceramic from the SiO2‐K2O‐ZnO‐Al2O3‐TiO2 system containing a single crystalline phase, gahnite (ZnAl2O4). TiO2 was used as a nucleating agent for the heat‐induced precipitation of gahnite crystals of 5‐10 nm. The evolution of the ZnAl2O4 spinel structure through the gradual formation of Al‐O bonds was examined by infrared spectroscopy. The dark brown color of the transparent precursor glass and glass‐ceramic was eliminated using CeO2. The increase in transparency of the CeO2‐doped glass and glass‐ceramics was demonstrated by UV‐visible absorption spectroscopy. EPR measurements confirmed the presence of Ce3+ ions, indicating that CeO2 was effective in eliminating the brown color introduced by Ti3+ ions via oxidation to Ti+4. The hardness of the glass‐ceramic was 30% higher than that of the as‐prepared glasses. This work offers key guidelines to produce hard, transparent glass‐ceramics which may be potential candidates for a variety of technological applications, such as armor and display panels.  相似文献   

6.
Er3+ ions‐doped germano‐gallate oxyfluoride glass‐ceramic containing BaF2 nanocrystals was prepared through conventional melt quenching and subsequent thermal treatment method. X‐ray diffraction patterns and transmission electron microscope images confirmed the formation of BaF2 nanocrystals in glass‐ceramics. Preferential incorporation of Er3+ ions into the BaF2 nanocrystals were confirmed by the absorption spectra and emission spectra, and enhanced upconversion emission and infrared emission were observed. Relatively high transmittance in the mid‐infrared region indicated great potential of this germano‐gallate oxyfluoride glass‐ceramics as host materials for the efficient mid‐infrared emission from rare‐earth ions.  相似文献   

7.
Cr3+–Yb3+ codoped transparent glass‐ceramics containing Y3Al5O12 nanocrystals were prepared by heat treatment of as‐prepared glass sample and characterized by X‐ray diffraction and transmission electron microscopy. The efficient energy transfer from Cr3+ to Yb3+ ions through multi‐phonon‐assisted process was confirmed by the luminescence spectrum and fluorescent lifetime measurements. When excited by the lights from a solar simulator in the wavelength region of 400–800 nm, greatly enhanced near‐infrared emission around 1 μm was achieved from Cr3+–Yb3+ codoped glass ceramic compared with that from as‐prepared glass and Ce3+–Yb3+ codoped glass ceramic. These results demonstrate that the Cr3+–Yb3+ codoped glass ceramic is a promising material for enhancement of the efficiency of solar energy utilization.  相似文献   

8.
Ni2+‐doped ZnAl2O4/ZnO composite films were successfully fabricated on single crystal silicon substrates through a single‐source precursor route, which mainly involved slurry coating of Ni–Zn–Al‐layered double hydroxide precursor followed by calcination at elevated temperatures. Material characterization has been presented using a combination of X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectra, Raman spectra, UV–vis diffuse reflectance spectra, and fluorescence spectroscopy measurements. The results showed that Ni2+ ions could be uniformly doped in the two‐phase ZnO and ZnAl2O4 lattices. A broadened and intense polychromatic emission peak covering the whole visible region was obtained over 4.3 mol% Ni2+‐doped ZnAl2O4/ZnO composite film, which was attributed to the presence of an appropriate number of luminescent Ni2+centers in the ZnO and ZnAl2O4 double host matrix, thus largely enhancing the related transition. We believe that such unique ZnAl2O4/ZnO films can open up a new opportunity for advanced applications of composite phosphors.  相似文献   

9.
The precursor glass in the ZnO–Al2O3–B2O3–SiO2 (ZABS) system doped with Eu2O3 was prepared by the melt‐quench technique. The transparent willemite, Zn2SiO4 (ZS) glass–ceramic nanocomposites were derived from this precursor glass by a controlled crystallization process. The formation of willemite crystal phase, size, and morphology with increase in heat‐treatment time was examined by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 18–70 nm whereas the grain size observed in FESEM is 50–250 nm. The refractive index value is decreased with increase in heat‐treatment time which is caused by the partial replacement of ZnO4 units of ZS nanocrystals by AlO4 units due to generation of vacancies. Fourier transform infrared (FTIR) reflection spectroscopy was used to evaluate its structural evolution. Vickers hardness study indicates marked improvement of hardness in the resultant glass‐ceramics compared with its precursor glass. The photoluminescence spectra of Eu3+ ions exhibit emission transitions of 5D07Fj (j = 0, 1, 2, 3, and 4) and its excitation spectra show an intense absorption band at 395 nm. These spectra reveal that the luminescence performance of the glass–ceramic nanocomposites is enhanced up to 17‐fold with the process of heat treatment. This enhancement is caused by partitioning of Eu3+ ions into glassy phase instead of into the willemite crystals with progress of heat treatment. Such luminescent glass–ceramic nanocomposites are expected to find potential applications in solid‐state red lasers, phosphors, and optical display systems.  相似文献   

10.
Eu3+‐doped cesium barium borate glass with the composition of Cs2O·2BaO·3B2O3 was prepared by the conventional melt quenching method. The glass‐ceramic sample was obtained from the re‐crystallization of the as‐made glass to change the amorphous glass into a crystalline host. This reduces the Eu3+ in glass to Eu2+ ions resulting in a yellow‐emitting phosphor of Eu2+‐activated CsBaB3O6. The samples were investigated by the XRD patterns and SEM micrograph, the optical absorption, the photoluminescence spectra, and decay curves. The as‐made glass has only Eu3+ centers. Under the excitation of blue or near‐UV light, Eu2+‐doped CsBaB3O6 presents yellow‐emitting color from the allowed inter‐configurational 4f–5d transition in the Eu2+ ions. The maximum absolute luminescence quantum efficiencies of Eu2+‐doped CsBaB3O6 phosphor was measured to be 47% excited at 430 nm light at 300 K. By taking into account the efficient excitation in blue wavelength region, this new phosphor could be a potential yellow‐emitting phosphor for an application in white light‐emitting diodes fabricated with blue chips.  相似文献   

11.
Novel Ho3+ doped highly transparent NaYbF4 glass‐ceramics were successfully fabricated by melt‐quenching technique. Their structural and luminescent properties were systemically investigated by XRD, TEM, absorption spectra, upconversion spectra, and lifetime measurements. Excited by 980‐nm laser, samples exhibit characteristic emissions of Ho3+. Impressively, the luminescent color can be tuned easily from red for precursor glass to green for glass‐ceramics. Such novel phenomenon was elaborately investigated and is owing to the reduced multiphonon nonradiative relaxation and enhanced cross‐relaxation of Ho3+ in NaYbF4 nanocrystals after crystallization. Our results indicate that NaYbF4 transparent glass‐ceramics is an excellent host for upconversion.  相似文献   

12.
Optical gas sensors present fundamental and industrial importance considering their broad applications. Challenges remain to obtain new photonic materials with broadband emission covering the absorption spectrum of typical combustion gases. Here, broadband near‐infrared (NIR) photoluminescence (PL) spanning the wide absorption spectrum of typical combustion products is realized through instant precipitation of stable cubic perovskite KMgF3:Ni2+ nanocrystals inside an aluminosilicate glass matrix after melt‐quenching. Excited by an 808 nm laser diode, NIR luminescence with a peak centered at ~1624 nm and a bandwidth (FWHM) greater than 315 nm is observed, originating from 3T2g(3F) → 3A2g(3F) electronic transition of octahedral coordinated Ni2+ in KMgF3 GC. Controlled precipitation of these perovskite crystals from a supercooled aluminosilicate melt enables immediate encapsulation and, hence, stabilization in an inorganic glass phase. While the precipitation temperature has only a small effect on crystallite size, it controls the redox state of the melt and the degree of dopant incorporation into the crystalline phase so that PL performance can be optimized. Spontaneous crystallization of perovskite nanocrystals inside glass may offer a new way to stabilize these novel nanocrystals. Moreover, spontaneous crystallization can be attractive in the control of activator partitioning and in the fabrication of composite fiber devices with high transparency and emission gain. In the present case, this offers a potential platform for broadly tunable gain media, for example, for combustion gas sensing.  相似文献   

13.
《Ceramics International》2020,46(13):21351-21359
The luminescence properties of ceramic phosphors based on two spinel hosts MgAl2O4 and ZnAl2O4 doped with manganese ions have been studied. It has been found that the spectral properties of these phosphors can be strongly varied by changing synthesis conditions. Both types of doped ceramic spinel can serve as efficient Mn2+ green-emitting phosphors having peak emissions at 525 and 510 nm, respectively. Mn-doped MgAl2O4 spinel can also be prepared as an efficient Mn4+ red-emitting phosphor having peak emission at ~651 nm by using specific temperatures of heat treatment in air. It has also been shown that the conversion of Mn2+ to Mn4+ and viсe versa, as well as the coexistence of Mn2+ green and Mn4+ red emissions, can be accomplished by properly chosen annealing conditions of the same initially synthesized MgAl2O4:Mn sample. Manganese doped MgAl2O4 spinel with an optimal intensity ratio of green and red emissions can be a promising single-phase bicolor phosphor suitable for the development of warm white phosphor-converted LED lamps. On the other hand, it has been determined that perfectly normal ZnAl2O4 spinel cannot be doped with Mn4+ ions in contrast to partially inverse MgAl2O4 spinel. However, ZnAl2O4 samples unintentionally doped with impurity Cr3+ ions show emission spectra in the far-red region with well pronounced R, N and vibronic lines of Cr3+ luminescence due to the perfect normal spinel structure of synthesized ZnAl2O4 ceramics. Also, by partially substituting Al3+ cations for Mg2+ in ZnAl2O4 there is an opportunity to obtain Mn4+ doped or Mn4+/Cr3+ codoped far-red emitting phosphors which can be suitable for indoor plant growth lighting sources.  相似文献   

14.
Eu3+‐doped transparent phosphate precursor glasses and glass‐ceramics containing TbPO4 nanocrystals were successfully fabricated by a conventional high‐temperature melt‐quenching technique for the first time. The formation of TbPO4 nanocrystals was identified through X‐ray diffraction, transmission electron microscopy, high‐resolution transmission electron microscopy, selected‐area electron diffraction, and photoluminescence emission spectra. The obvious Stark splitting of 5D07FJ (J = 1, 2, 4) transitions of Eu3+and the increase of internal quantum efficiency indicate the incorporation of Eu3+ into TbPO4 nanocrystals. Energy transfer from Tb3+ ions to Eu3+ ions was investigated using excitation and emission spectra at room temperature. The glass‐ceramics obtained have more efficient Tb3+ to Eu3+ energy transfer than the glass, and so serve as good hosts for luminescent materials.  相似文献   

15.
A Pr3+‐doped transparent oxyfluoride glass‐ceramic containing Ca5(PO4)3F nanocrystals was prepared by melt quenching and subsequent thermal treatment. The crystallization phase and morphology of the Ca5(PO4)3F nanocrystals were investigated by X‐ray diffraction and transmission electron microscope, respectively. The volume fraction of the Ca5(PO4)3F nanocrystals in the glass‐ceramic is about 10% and the fraction of Pr3+ ions incorporated into the Ca5(PO4)3F nanocrystals is about 22%. The peak absorption cross sections at 435 and 574 nm increase up to 128% and 132% after crystallization, respectively. The peak stimulated emission cross sections of the 3P03H4 blue laser channel and 3P03F2 red laser channel for the glass‐ceramic are 4.95 × 10?20 and 29.8 × 10?20 cm2, respectively. The spectral properties indicate that the glass‐ceramic is a potential visible laser material.  相似文献   

16.
Cr3+ doped transparent glass ceramics of SiO2–Ga2O3–Li2O were fabricated by melt-quenching and subsequent crystallization. X-ray diffraction and transmission electron microscopy analyses evidenced that cubic LiGa5O8 nanocrystals were homogeneously precipitated among the silicate glass matrix. The incorporation of Cr3+ ions into LiGa5O8 nanocrystals was evidenced by absorption, emission and time-resolved luminescence spectra. Impressively, the present Cr3+ doped glass ceramics were demonstrated to be a new near-infrared (∼720 nm) long-lasting bulk phosphor whose luminescence can last for more than 2 h after stoppage of UV (250–350 nm) irradiation. The occurring of Cr3+ long-lasting phosphorescence in the glass ceramics was confirmed to be mainly due to the precipitation of Cr3+:LiGa5O8 nanocrystals from glass matrix. The filling/releasing of electrons into/from the intrinsic traps of LiGa5O8 nanocrystals through the conduction band of host were proposed to be responsible for the realization of the long-lasting phosphorescence of the investigated Cr3+ doped glass ceramics.  相似文献   

17.
Dual valence Eu‐doped transparent glass‐ceramics containing LuPO4 nanocrystals were fabricated by melt‐quenching technique in air atmosphere. Their luminescent properties were systematically investigated by excitation, emission spectra, and decay lifetime measurements. The prominent Stark splitting, low forced electric‐dipole 5D07F2 transition and long decay lifetimes of Eu3 + emission for glass‐ceramics reveal the incorporation of Eu3 + into LuPO4 nanocrystals. The enhanced Eu2 + emission and reduction mechanism of Eu3 + to Eu2 + after crystallization are discussed briefly. Our results indicate that transparent LuPO4 glass‐ceramics may find applications in photonics.  相似文献   

18.
Novel Eu3+‐doped transparent oxyfluoride glass‐ceramics containing BaLuF5 nanocrystals were successfully fabricated by melt‐quenching technique for the first time. Analyses of XRD patterns prove that the new precipitated glass‐ceramics are crystallized in cubic BaLuF5 based on isostructural BaGdF5. Intense red emissions observed in glass ceramics are attributed to the enrichment of Eu3+ ions into BaLuF5 nanocrystals. Besides, obvious stark splitting emissions, low forced electric dipole 5D07F2 transition, and long decay lifetimes of Eu3+ ions also evidence the partition of Eu3+ ions into BaLuF5 nanocrystals with low phonon energy. Such transparent material may find applications in photonics.  相似文献   

19.
Borosilicate glasses doped with PbSe quantum dots (QDs) were prepared by a conventional melt‐quenching process followed by heat treatment, which exhibit good thermal, chemical, and mechanical stabilities, and are amenable to fiber‐drawing. A broad near infrared (NIR) photoluminescence (PL) emission (1070‐1330 nm) band with large full‐width at half‐maximum (FWHM) values (189‐266 nm) and notable Stokes shift (100‐210 nm) was observed, which depended on the B2O3 concentration. The PL lifetime was about 1.42‐2.44 μs, and it showed a clear decrease with increasing the QDs size. The planar [BO3] triangle units forming the two‐dimensional (2D) glass network structure clearly increased with increasing B2O3 concentration, which could accelerate the movement of Pb2+ and Se2? ions and facilitate the growth of PbSe QDs. The tunable broadband NIR PL emission of the PbSe QD‐doped borosilicate glass may find potential application in ultra‐wideband fiber amplifiers.  相似文献   

20.
There is a special need to develop a dosimetry technique with a large‐dynamic range and high‐spatial resolution to characterize the microstructured X‐ray beams used in microbeam radiation therapy (MRT) for cancer. We report the synthesis and characterization of oxyfluoride glass‐ceramic (SiO2–Al2O3–CaF2–CaO–SmF3) plates, which contain trivalent‐samarium‐doped calcium fluoride (CaF2:Sm3+) nanocrystals, for use as a dosimetric detector material, particularly for MRT applications. Our approach utilizes the extent of Sm3+→Sm2+ valence reduction caused by X‐ray irradiation as a probe of the X‐ray dose delivered; and confocal fluorescent microscopy is used to read out the distribution of valence reduction through the photoluminescence (PL) signal. Our study showed that the Sm3+→Sm2+ valence reduction takes place in CaF2 nanocrystals, but not in the glass matrix. The Sm2+ shows PL emission predominantly due to the fast 4f55d17F0 transition, which allows us to read out the detector plate at a high scanning speed. Further, our experiments showed that the detection dose range reaches several thousands of grays, and X‐ray dose distribution is detected at a micrometer scale. In addition, the Sm2+ signal can be erased either by heating the irradiated sample at a suitable high temperature or by exposing it to UV light; and the erased glass‐ceramic plate is reusable. The new Sm‐doped oxyfluoride glass‐ceramic with CaF2 nanocrystals reported in this work shows potential for practical use in high‐dose and high‐resolution dosimetry for MRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号