首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study of hydration kinetics by in‐situ X‐ray powder diffraction can provide fundamental details on the time evolution of the phase assemblage in hydrating cement pastes. The main limit of the technique is the lack of quantitative information about the amount of C–S–H and unbound water, which cannot be measured directly by conventional quantitative phase analysis procedures based on X‐ray diffraction, due to their X‐ray amorphous nature. Here, a mass balance algorithm, which can be used to determine the amount of both C–S–H and capillary water, is presented and compared with methods based on standards. This method can also provide information about the stoichiometry of C–S–H formed by the reaction of C3S, hydrated in the presence of gypsum, suggesting the incorporation of 0.3 mol of sulfate per mole of C–S–H precipitated. In addition, the results show a significant increase in the rate of C3S hydration, when gypsum is added to the system.  相似文献   

2.
Effect of water to cement (w/c) ratio and temperature profiles on the densification of C–S–H (calcium silicate hydrate gel) and hydration kinetics of triclinic tricalcium silicate (C3S) is studied beyond the first day of hydration. Calorimetry and quantitative X‐ray diffraction/Rietveld analysis show that degree of hydration is unaffected by w/c up to 7 days and marginally thereafter. Coupling the degree of hydration with the portlandite content measured from thermal analysis indicate that C/S ratio of C–S–H decreases with increasing w/c. There is a clear increase in the portlandite content with increasing w/c, even though the degree of hydration is unchanged, due to the variations in C/S ratio of C–S–H. On the other hand, when C3S is initially cured at a lower temperature (20°C) and then at a higher temperature (40°C), there is a significant increase in the reactivity even until 28 days and vice versa. These experimental results were explained using the densified volumetric growth hypothesis, which assumes that hydration kinetics are dependent on the internal surface area of C–S–H.  相似文献   

3.
The composition and structure of the calcium‐silicate‐hydrate (C–S–H) phases formed by hydration of white portland cement–metakaolin (MK) blends have been investigated using 27Al and 29Si MAS NMR. This includes blends with 0, 5, 10, 15, 20, 25, 30 wt% MK, following their hydration from 1 d to 1 yr. 29Si MAS NMR reveals that the average Al/Si ratio for the C–S–H phases, formed by hydration of the portland cement–MK blends, increases almost linearly with the MK content but is invariant with the hydration time for a given MK content. Correspondingly, the average aluminosilicate chain lengths of the C–S–H increase with increasing MK content, reflecting the formation of a C–S–H with a lower Ca/Si ratio. The increase in Al/Si ratio with increasing MK content is supported by 27Al MAS NMR which also allows detection of strätlingite and fivefold coordinated aluminum, assigned to AlO5 sites in the interlayer of the C–S–H structure. Strätlingite is observed after prolonged hydration for MK substitution levels above 10 wt% MK. This is at a somewhat lower replacement level than expected from thermodynamic considerations which predict the formation of strätlingite for MK contents above 15 wt% after prolonged hydration for the actual portland cement–MK blends. The increase in fivefold coordinated Al with increasing MK content suggests that these sites may contribute to the charge balance of the charge deficit associated with the incorporation of Al3+ ions in the silicate chains of the C–S–H structure.  相似文献   

4.
This study aimed to monitor the effect of temperature and the addition of nanosilica on the nanostructure of the C–S–H gel forming during tricalcium silicate (C3S) hydration. Two types of paste were prepared from a synthesized T1 C3S. The first consisted of a blend of deionized water and C3S at a water/solid ratio of 0.425. In the second, a 90 wt% C3S + 10 wt% of nanosilica blend was mixed with water at a water/solid ratio of 0.7. The pastes were stored in closed containers at 100% RH and 25°C, 40°C, or 65°C. The hydration reaction was detained after 1, 14, 28, or 62 d with acetone, and then pastes were studied by 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR).The main conclusion was that adding nSA expedites C3S hydration at any age or temperature and modifies the structure of the C–S–H gel formed, two types of C–S–H gel appear. At 25°C and 40°C, more orderly, longer chain gels are initially (1 d) obtained as a result of the pozzolanic reaction between nSA and portlandite (CH) (C–S–HII gel formation). Subsequently, ongoing C3S hydration and the concomitant flow of dimers shorten the mean chain length in the gel.  相似文献   

5.
The partial replacement of ordinary portland cement (OPC) by fine mineral fillers accelerates the rate of hydration reactions. This acceleration, known as the filler effect, has been attributed to enhanced heterogeneous nucleation of C‐S‐H on the extra surface provided by fillers. This study isolates the cause of the filler effect by examining how the composition and replacement levels of two filler agents influence the hydration of tricalcium silicate (T1‐Ca3SiO5; C3S), a polymorph of the major phase in ordinary portland cement (OPC). For a unit increase in surface area of the filler, C3S reaction rates increase far less than expected. This is because the agglomeration of fine filler particles can render up to 65% of their surface area unavailable for C‐S‐H nucleation. By analysis of mixtures with equal surface areas, it is hypothesized that limestone is a superior filler as compared to quartz due to the sorption of its aqueous CO32? ions by the C‐S‐H—which in turn releases OH? species to increase the driving force for C‐S‐H growth. This hypothesis is supported by kinetic data of C3S hydration occurring in the presence of CO32? and SO42? ions provisioned by readily soluble salts. Contrary to prior investigations, these results suggest that differences in heterogeneous nucleation of the C‐S‐H on filler particle surfaces, caused due to differences in their interfacial properties, have little if any effect on C3S hydration kinetics.  相似文献   

6.
The incorporation of aluminum in the calcium–silicate–hydrate (C–S–H) phases formed by hydration of three different white Portland cements has been investigated by 29Si MAS NMR. The principal difference between the three cements is their bulk Al2O3 contents and quantities of alkali (Na+ and K+) ions. 29Si MAS NMR allows indirect detection of tetrahedral Al incorporated in the silicate chains of the C–S–H structure by the resonance from Q2(1Al) sites. Analysis of the relative 29Si NMR intensities for this site, following the hydration for the three cements from 0.5 d to 30 weeks, clearly reveals that the alkali ions promote the incorporation of Al in the bridging sites of the dreierketten structure of SiO4 tetrahedra in the C–S–H phase. The increased incorporation of Al in the C–S–H phase with increasing alkali content in the anhydrous cement is in accord with a proposed substitution mechanism where the charge deficit, obtained by the replacement of Si4+ by Al3+ ions in the bridging sites, is balanced by adsorption/binding of alkali ions in the interlayer region most likely in the near vicinity of the AlO4 tetrahedra. This result is further supported by similar 29Si MAS NMR experiments performed for the white Portland cements hydrated in 0.30M NaOH and NaAlO2 solutions.  相似文献   

7.
Calcium silicate hydrates (C‐S‐H), the primary binding phase in concrete, is the most prominent physiochemical factor controlling the mechanical and chemical properties in the production of concrete. This paper reports the local‐binding structure and morphological details of C‐S‐H as determined by high‐resolution X‐ray spectromicroscopy. Hydrated tricalcium silicate (C3S) was used to determine the properties and role of the outer products (Op) of C3S. C‐S‐H with different molar ratios of Ca/Si, were synthesized (Syn‐CSH) to quantitatively evaluate the effect of silicate polymerization on Ca L and Si K edge of C‐S‐H. Near edge X‐ray absorption fine structure (NEXAFS) spectroscopy of Syn‐CSH showed no variation in peak positions and energy separation for CaLIII, II edge for the Ca/Si ratios investigated. Compared to Syn‐CSH, C3S, when hydrated for 17 d, had a similar local structure around Ca. Si K edge NEXAFS analysis on Syn‐CSH showed a tendency for the peak positions of both the Si K edge and the peak induced by multiple scattering to shift to higher energy levels. The results also indicated that the distance between the two peaks increased with a decrease of the Ca/Si ratio in Syn‐CSH. Silicate polymerization influenced the multiple scattering of distant shell atoms more than the binding energy of the core atoms. Op of C3S had a uniform and higher degree of silicate polymerization compared to the core area. The results imply that Op reduces the hydration process of C3S into the core area thereby playing a key role on the properties of concrete upon formation.  相似文献   

8.
Improving concrete sustainability by increasing durability requires a detailed knowledge about microstructural properties. Due to the nanoscale nature of hydrate phases that determine concrete properties, microstructural characterization remains a challenge. Analytical electron microscopy offers promising techniques to characterize cement hydrates. In this study, electron microscopy imaging, diffraction, and energy dispersive X‐ray spectroscopic information are combined in order to compare the structural properties of calcium silicate hydrate (C–S–H) and calcium aluminum silicate hydrate (C–A–S–H) phases. Results are shown for 28 days hydrated C–(A)–S–H of portland cement and cement containing ground granulated blast‐furnace slag (GGFBS). Electron diffraction patterns of single fibrous C–S–H and foil‐like C–A–S–H phases reveal a nanocrystalline structure. Also, it is shown by electron diffraction pattern that the crystal structures of C–S–H and C–A–S–H phases are similar. It is confirmed that the crystal structure of 14 Å tobermorite serves as good base for the structure of C–S–H. The electron diffraction patterns of fibrous C–S–H show streaks which indicate stacking faults, proofing that polymerization of silicate chains in C–S–H is limited. Here, we demonstrate for the first time that the dreierketten silicate chains contained in the C–S–H structure are oriented in parallel to the long axis of C–S–H fibers. This finding should be implemented in modeling of crystal growth of C–S–H.  相似文献   

9.
Simulations of tricalcium silicate (C3S) hydration using a kinetic cellular automaton program, HydratiCA, indicate that the net rate depends both on C3S dissolution and on hydration product growth. Neither process can be considered the sole rate-controlling step because the solution remains significantly undersaturated with respect to C3S yet significantly supersaturated with respect to calcium silicate hydrate (C–S–H). The reaction rate peak is attributed to increasing coverage of C3S by C–S–H, which reduces both the dissolution rate and the supersaturation of C–S–H. This supersaturation dependence is included in a generalized boundary nucleation and growth model to describe the kinetics without requiring significant impingement of products on separate cement grains. The latter point explains the observation that paste hydration rates are insensitive to water/cement ratio. The simulations indicate that the product layer on C3S remains permeable; no transition to diffusion control is indicated, even long after the rate peak.  相似文献   

10.
New cementitious materials based on calcium hydrosilicate hydrates were recently developed as potential substitutes for ordinary portland cement, but with a reduced CO2 footprint. The materials are produced by hydrothermal processing of SiO2 and Ca(OH)2, giving rise to calcium silicate hydrates, followed by mechanical activation of the latter via cogrinding with various siliceous materials. Thus, the chemical composition in terms of C/S ratio could be adjusted over a broad range (1–3). In this study the synthesis of a previously unknown cementitious material produced via the combination of mechanical activation in a laboratory mill and thermal treatment of a mixture of quartz and hydrothermally synthesized calcium silicate hydrates: α‐Ca2[HSiO4](OH) (α‐C2SH) and Ca6[Si2O7](OH)6 (jaffeite) are reported. It forms independently of the type of mill used (eccentric vibrating mill, vibration grinding mill) after thermal treatment of the ground materials at 360°C–420°C. The new material is X‐ray amorphous and possesses a CaO/SiO2 ratio of 2. A characteristic feature in regards to the silicate anionic structure is the increased silicate polymerization (up to 27% Si2O7 dimers) as revealed by the trimethylsilylation method. Infrared (IR) spectra show a very broad absorption band centered at about 935 cm?1. Another characteristic feature is the presence of ~2.5 wt% H2O as shown by thermogravimetry (TG) coupled with IR spectroscopy. As this water is bound mostly as hydroxyl to Ca, we refer to this new cementitious material as calcium‐oxide–hydroxide–silicate (C–CH–S). Calorimetric measurements point to a very high hydraulic reactivity which is beyond that for typical C2S materials. The influence of the type of grinding on the thermal behavior of α‐C2SH upon its transformation into water‐free Ca2SiO4 modifications is discussed.  相似文献   

11.
Impure tricalcium silicate (C3S) in portland cement may contain various foreign ions. These ions can stabilize different polymorphs of C3S at room temperature and may affect its reactivity. In this paper, the effects of magnesium and zinc on the polymorph type, hydration kinetics, and the hydrate morphology of C3S were investigated. The pure C3S has the T1 structure while magnesium and zinc stabilize polymorphs M3 and T2/T3, respectively. The two elements have distinct effects on the hydration kinetics. Zinc increases the maximum heat released. Magnesium increases the hydration peak width. The C–S–H morphology is modified, leading to longer needles in the presence of zinc and thicker needles in the presence of magnesium. Zinc is incorporated into C–S–H, while magnesium is only incorporated slightly, if at all, but rather seems to inhibit nucleation. Implementing experimentally measured parameters for C–S–H nucleation and growth in the μic hydration model captured well the observed changes in hydration kinetics. This supports C–S–H nucleation and growth to be rate controlling in the hydration of C3S.  相似文献   

12.
The ceramic sanitary‐ware market generates large amounts of waste, both during the production process and due to construction and demolition practices. In this paper, the effect of different amounts and calcium sources (calcium hydroxide Ca(OH)2, calcium aluminate cement CAC, Portland cement PC) on the alkaline activation of ceramic sanitary‐ware waste (CSW) was assessed. Blended samples were activated with NaOH and sodium silicate solutions and cured for 3 and 7 days at 65°C. The maximum amount of calcium source‐type added to the system varied according to its influence on the compactability of the mortars.CSW was physico‐chemically characterized and the compressive strength development of activated samples was assessed on the mortars. The nature of the reaction products was analyzed in pastes, by X‐ray diffraction, thermogravimetric analysis, infrared spectroscopy and microscopic studies. The results show a great positive influence with the addition of moderate amounts of Ca(OH)2, PC and CAC on the mechanical properties. Among the typical hydrates usually observed in plain water‐hydrated PC or CAC, only AH3 and a small amount of C3AH6 were identified in the alkali‐activated CSW/CAC blended pastes, which indicates that Al and Ca from PC, CAC and Ca(OH)2 are taken up in the newly formed (N,C)‐A‐S‐H or C‐A‐S‐H gels.  相似文献   

13.
Calcium silicate hydrates containing sodium [C–(N)–S–H], and sodium aluminosilicate hydrates [N–A–S–H] are the dominant reaction products that are formed following reaction between a solid aluminosilicate precursor (eg, slags, fly ash, metakaolin) and an alkaline activation agent (eg NaOH) in the presence of water. To gain insights into the thermochemical properties of such compounds, C–(N)–S–H and N–A–S–H gels were synthesized with compositions: 0.8≤Ca/Si≤1.2 for the former, and 0.25≤Al/Si≤0.50 (atomic units) for the latter. The gels were characterized using thermogravimetric analysis (TGA), scanning electron microscopy with energy‐dispersive X‐ray microanalysis (SEM‐EDS), and X‐ray diffraction (XRD). The solubility products (KS0) of the gels were established at 25°C and 50°C. Self‐consistent solubility data of this nature are key inputs required for calculation of mass and volume balances in alkali‐activated binders (AABs), and to determine the impacts of the precursor chemistry on the hydrated phase distributions; in which, C–(N)–S–H and N–A–S–H compounds dominate the hydrated phase assemblages.  相似文献   

14.
Pozzolanic mineral additives, such as silica fume (SF) and metakaolin (MK), are used to partially replace cement in concrete. This study employs extensive experimentation and simulations to elucidate and contrast the influence of SF and MK on the early age hydration rates of tricalcium silicate (triclinic C3S), the major phase in cement. Results show that at low replacement levels (i.e., ≤10%), both SF and MK accelerate C3S hydration rates via the filler effect, that is, enhanced heterogeneous nucleation of the main hydration product (C–S–H: calcium‐silicate‐hydrate) on the extra surfaces provided by the additive. The filler effect of SF is inferior to that of MK because of agglomeration of the fine particles of SF, which causes significant reduction (i.e., up to 97%) in its surface area. At higher replacement levels (i.e., ≥20%), while SF continues to serve as a filler, the propensity of MK to allow nucleation of C–S–H on its surface is substantially suppressed. This reversal in the filler effect of MK is attributed to the abundance of aluminate [Al(OH)4?] ions in the solution—released from the dissolution of MK—which inhibit topographical sites for C–S–H nucleation and impede its subsequent growth. Results also show that in the first 24 hours of hydration, MK is a superior pozzolan compared to SF. However, the pozzolanic activities of both SF and MK are limited and, thus, do not produce significant alterations in the early age hydration kinetics of C3S. Overall, the outcomes of this study provide novel insights into the mechanistic origins of the filler and pozzolanic effects of SF and MK, and their impact on cementitious reaction rates.  相似文献   

15.
The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 °C.The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C3S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C3S indicates that the enveloping C–S–H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C–S–H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C–S–H b-cell parameter.  相似文献   

16.
Carbonation of synthesized calcium‐silicate‐hydrate (C–S–H) is difficult to avoid and can have significant impact on the molecular structure. Considerable carbonation was observed in C–S–H synthesized from the double decomposition of sodium silicate and calcium nitrate solutions but not in C–S–H synthesized from the direct reaction of fumed silica and calcium hydroxide solution. In order to isolate the cause of the greater carbonation in C–S–H synthesized by double decomposition, carbonation was induced in phase‐pure C–S–H by reaction with four different water‐based solutions containing dissolved CO2 with varying pH and alkali content. Powder X‐ray diffraction, thermogravimetric analysis, and 29Si nuclear magnetic resonance were used to probe the carbonation and the resulting changes in molecular structure. The pH of the solution was seen to strongly influence the degree of carbonation, while the alkali content had much less effect.  相似文献   

17.
A quasi‐amorphous low‐calcium‐silicate hydraulic binder, with an overall CaO/SiO2 (C/S) molar ratio of 1.1, was produced. This cementitious material was then hydrated with aqueous solutions containing 3 wt% alkalis (either NaOH, Na2CO3 or Na2SiO3). The evolution of the hydration processes of the samples were monitored by compressive strength testing, XRD, FTIR, 29Si and 27Al MAS NMR, isothermal calorimetry and TGA. It was found that the nearly exclusive hydration product formed was a C‐S‐H phase with a semi‐crystalline structure. More importantly, the paste prepared with the Na2SiO3 solution developed compressive strength values similar to those of ordinary portland cements (OPC) with faster early age kinetics. In addition, the isothermal calorimetry results indicated that these new hydraulic binders present much lower heat of hydration values compared with a traditional OPC. The results presented here open the possibility of producing cement with a compressive strength comparable to that of OPC but with lower CO2 emissions during the production process and with lower hydration heat related problems during the production of concrete structures.  相似文献   

18.
The hydration kinetics of tricalcium silicate (C3S) has been the subject of much study, yet the experimentally observed effects of the water‐to‐cement (w/c) ratio and particle size distribution have been difficult to explain with models. Here, we propose a simple hypothesis that provides an explanation of the lack of any significant effect of w/c on the kinetics and for the strong effect of the particle size distribution on the amount of early hydration associated with the main hydration peak. The hypothesis is that during the early hydration period the calcium–silicate–hydrate product forms only in a reaction zone close to the surface of the C3S particles. To test the hypothesis, a new microstructure‐based kinetics (MBK) model has been developed. The MBK model treats the C3S particle size distribution in a statistical way to save computation time and treats the early hydration as essentially a boundary nucleation and growth process. The MBK model is used to fit kinetic data from two published studies for C3S with different size distributions, one for alite (impure C3S) pastes and one for stirred C3S suspensions. The model is able to fit all the data sets with parameters that show no significant trend with particle size, providing support for the reaction zone hypothesis.  相似文献   

19.
Pastes of tricalcium silicate (C3S) and β-dicalcium silicate (C2S) 23 years old were studied by electron probe microanalysis. In both cases, regions consisting entirely or largely of calcium hydroxide and of CSH were distinguished on a scale of 2–50 μm. The regions high in CSH accounted for 75–80 percent of the whole in the C3S paste and about 96 percent in the C2S paste; these values are much higher than those initially occupied by anhydrous starting materials. Within the high CSH areas, no compositional variation was detected that could have corresponded to the so-called inner and outer hydrates. The ratio of mean Ca to mean Si in the high CSH areas was found to be 1.72 for the C3S paste and 1.78 for the C2S paste with an exciting beam energy of 10 keV.  相似文献   

20.
Advances in nano‐computed X‐ray tomography (nCT), nano X‐ray fluorescence spectrometry (nXRF), and high‐performance computing have enabled the first direct comparison between observations of three‐dimensional nanoscale microstructure evolution during cement hydration and computer simulations of the same microstructure, using HydratiCA. nCT observations of a collection of triclinic tricalcium silicate () particles reacting in a calcium hydroxide solution are reported and compared to simulations that duplicate, as nearly as possible, the thermal and chemical conditions of those experiments. Particular points of comparison are the time dependence of the solid phase volume fractions, spatial distributions, and morphologies. Comparisons made at 7 hours of reaction indicate that the simulated and observed volumes of consumed by hydration agree to within the measurement uncertainty. The location of simulated hydration product is qualitatively consistent with the observations, but the outer envelope of hydration product observed by nCT encloses more than twice the volume of hydration product in the simulations at the same time. Simultaneous nXRF measurements of the same observation volume imply calcium and silicon concentrations within the observed hydration product envelope that are consistent with Ca(OH)2 embedded in a sparse network of calcium silicate hydrate (C–S–H) that contains about 70% occluded porosity in addition to the amount usually accounted as gel porosity. An anomalously large volume of Ca(OH)2 near the particles is observed both in the experiments and in the simulations, and can be explained as originating from the hydration of additional particles outside the field of view. Possible origins of the unusually large amount of observed occluded porosity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号