首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
以液态聚碳硅烷(LPCS)为先驱体,采用脉冲化学液气相沉积(脉冲CLVD)与先驱体浸渍裂解(PIP)联用工艺制备了C/SiC复合材料。采用排煤油法测定了材料的密度,三点弯曲法测试材料的力学性能,采用扫描电子显微镜观察弯曲试样的断口形貌。结果表明:密度为1.76 g.cm-3的沉积试样在经过5轮PIP工艺处理后,材料的密度达到1.98 g.cm-3,抗弯强度达到321.9 MPa,和PIP工艺完全致密化的复合材料的密度及性能相当,但制备周期缩短到10天。材料中的PIP-SiC基体除了能填充纤维束间及层间的大孔隙,还能进一步填充纤维束内由于纤维束丝分布不均匀而在脉冲CLVD工艺过程中残留的大孔隙。  相似文献   

2.
以短炭纤维为增强体,采用浸渍模压炭化增密工艺制备C/C多孔体,结合反应熔渗法制备C/C-SiC复合材料。采用电子万能试验机测定复合材料的压缩性能,利用扫描电镜观察该材料及其断口显微形貌;研究纤维分散性对C/C多孔体孔隙和C/C-SiC复合材料压缩性能的影响。结果表明:分散炭纤维制备的C/C多孔体中纤维分布更均匀,没有因纤维束搭桥而产生大孔隙等缺陷;分散纤维增强的C/C-SiC复合材料在平行方向和垂直方向均有较好的压缩性能,其压缩强度分别为100.6 MPa和76.2 MPa。  相似文献   

3.
C/C-Cu复合材料的微观结构与冲击性能   总被引:1,自引:0,他引:1  
以炭纤维针刺整体毡为增强体,采用化学气相渗透(CVI)工艺制备出不同密度的炭/炭(C/C)多孔体,利用气压浸渍法将Cu合金渗入到C/C多孔体中制备C/C-Cu复合材料。在简支梁摆锤式冲击试验机上测试C/C-Cu复合材料的冲击性能,采用金相显微镜和扫描电镜观察材料的微观结构和断口形貌。结果表明:铜合金在C/C多孔体中分布均匀;C/C-Cu复合材料垂直方向的冲击韧性优于平行方向的冲击韧性;随C/C多孔体密度的增加,材料的冲击韧性先增加后降低。C/C多孔体密度适中(1.44 g/cm3)时,C/C-Cu复合材料内炭纤维、热解炭、铜合金等组分协同作用,在平行和垂直2个方向的冲击韧性都达到最大值,分别为2.68 J/cm2和4.45 J/cm2,具有假塑性断裂行为的特征。  相似文献   

4.
为解决高孔隙率多孔金属材料制备过程中的污染问题,以升华性萘颗粒为造孔剂,采用放电等离子脉冲烧结法(SPS)进行多孔铝块体材料的制备。结果表明,升华性造孔剂可在实现多孔铝材料高孔隙率的同时,有效提高其洁净度。采用该方法在350℃时可以制备出结构与尺寸可控性好、开孔效果好、孔隙率(63.33%)较高、粉体颗粒无明显长大的多孔金属铝块体材料。升华性造孔剂可对孔隙体积进行有效调节,实现多孔铝材料体内小孔与大孔的合理搭配,进一步改善多孔铝材料孔隙之间的连通性,该方法与SPS烧结技术相结合后,对于开孔性与颗粒连接性要求较高的多孔金属材料制备具有技术优势。  相似文献   

5.
采用先驱体浸渍裂解(PIP)法、联合液相硅漫渍(LSI)工艺和纤维干磨分散技术制备了纤维随机分布的、其体积分数ψ(Cf)分别为5%、10%和15%的短纤维增强SiC基复合材料,并研究了模压压力及纤维体积分数对该复合材料力学性能的影响.结果表明纤维增强SiC基复合材料的力学性能随其模压压力变化有所改变,最佳模压压力为20 MPa;随短纤维体积分数ψ(Cf)在一定范围内增加,复合材料的性能有所上升,当ψ(Cf)为15%时,该复合材料的断裂韧性、弯曲强度、弹性模量和显微硬度(HV25)分别为4.42 MPa·m1/2、170.1 MPa、149.6GPa和5191.  相似文献   

6.
以Si和SiO_2粉为原料,采用化学气相反应法在多孔低密度C/C复合材料的表面和内部制备SiC涂层,然后以MoSi_2粉末为原料分别对C/C复合材料以及SiC涂层改性的C/C复合材料进行反应熔渗,获得MoSi_2改性C/C复合材料。采用扫描电镜、X射线衍射以及电子探针显微分析对该复合材料的微观形貌与结构进行研究,并测试材料的抗弯强度。结果表明,与MoSi_2直接熔渗制备Si-Mo改性C/C复合材料相比,熔渗前制备SiC涂层作为界面层,可有效降低Si-Mo改性C/C复合材料的孔隙率,获得更加致密的Si-Mo改性C/C复合材料,材料密度从2.93 g/cm~3提高到3.20 g/cm~3,开孔率从10.77%降低到4.07%;抗弯强度从87 MPa提高到121 MPa。该复合材料中SiC和MoSi_2的含量较高,弯曲断裂呈现假塑性断裂。  相似文献   

7.
造孔剂含量对SiC/Al复合材料抗弯强度的影响   总被引:1,自引:0,他引:1  
采用无压熔浸法制备SiC/Al复合材料,并利用颗粒堆积和毛细管力的静力学理论研究造孔剂含量对SiC/Al复合材料抗弯强度的影响.通过扫描电镜对试样的断口形貌进行分析,发现造孔剂含量为20%(质量分数)时,残余孔隙较小,而造孔剂含量为10%和15%时,残余孔隙较大.造孔剂含量对抗弯强度产生影响,随造孔剂含量增加,抗弯强度先增大后减小,造孔剂为20%时,抗弯强度出现最大值343.63 MPa.  相似文献   

8.
将SiC陶瓷粉末、醇-水混合溶剂、丙烯酰胺-亚甲基双丙烯酰胺凝胶体系以及堇青石-锂辉石复合烧结助剂配制成料浆,采用凝胶注模成型–烧结工艺制备SiC多孔陶瓷,研究烧结助剂用量和烧结温度对多孔SiC陶瓷的形貌与显微结构、物相组成以及强度、孔径、开孔率与渗透率等性能的影响。结果表明:温度高于1 300℃时,复合烧结助剂熔融形成固溶体,从而实现SiC多孔陶瓷的低温烧结;随烧结助剂用量增加或烧结温度升高,SiC多孔陶瓷的开孔率和气体渗透速率均下降。在料浆中SiC陶瓷粉体体积分数为20%、烧结助剂质量分数为10%、醇水体积比为7:3、锂辉石与堇青石质量比为2:1的条件下,于1 370℃烧结后得到的SiC多孔陶瓷,孔隙率高、孔径分布集中(4~15μm),孔形貌呈均匀的三维无规则贯通结构,抗弯强度为8.5 MPa,开孔率达到67.9%,透气率为280.5 m~3/(m~2·Pa·h)。  相似文献   

9.
以炭纤维无纬布/网胎针刺整体毡为增强体,采用化学气相浸渗(CVI)法制备不同密度的炭/炭(C/C)多孔体,并进一步加压浸渗铜合金制备炭/炭-铜(C/C-Cu)复合材料,研究C/C多孔体密度对C/C-Cu复合材料压缩性能的影响。结果表明:C/C-Cu复合材料压缩强度在平行和垂直方向差异小;随C/C多孔体密度升高,C/C-Cu复合材料压缩强度提高,各向异性得到改善;多孔体密度为1.65 g/cm3时,材料在平行和垂直两个方向的压缩强度都达到最大值,分别为323.8 MPa和326.6 MPa;平行方向以多层复合剪切破坏形式为主;垂直方向基本沿45°对角线方向剪切破坏。  相似文献   

10.
以萘为造孔剂, 采用放电等离子烧结技术(spark plasma sintering, SPS)制备多孔镁块体材料。结果表明, 采用放电等离子烧结技术在470℃时可以制备出结构与尺寸可控性好、开孔率与孔隙率(44.25%)较高、粉体颗粒无明显长大的多孔金属镁块体材料。升华性造孔剂可对孔隙体积进行有效调节, 实现多孔镁材料体内小孔与大孔的合理搭配, 进一步改善多孔镁材料孔隙之间的连通性。将升华性造孔剂与放电等离子烧结技术相结合后, 对于开孔性与颗粒连接性要求较高的多孔金属材料制备具有技术优势, 并对解决传统造孔剂法制备生物多孔金属材料所面临的二次污染问题具有很好的借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号