首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Heat/mass transfer by air flow over a sample stack of planks is studied numerically. For the simulations, the low Re k-epsilon turbulence model and bounded QUICK scheme are used. The calculated Nusselt numbers are in good agreement with the experimental data

The results of our study show that the low Re turbulence models have advantages over the conventional high Re models for this type of industrial application. This is mainly due to the small height of separation bubbles resulting from the selected large blockage ratios (more than 50 percent) occurring in such flows

Numerical simulations were carried out to study the effect of the vertical air gap due to shrinkage and non uniform sawing as well as the non uniformity in the height of boards on the flow field and heat/mass transfer characteristics. The results show that the selected gap size significantly affects the local and average Nu numbers across the stack. We have suggested optimum gap sizes for maximum heat/mass for different flow velocities (Re numbers).  相似文献   

2.
In coating and gravure printing, an impinging jet nozzle with high thermal efficiency for drying of coated film was developed.

Trial production 0f 40 kinds of nozzle enables to develop a high-performance impinging jet nozzle with heat transfer coefficient 1.5 times larger than that of current slit nozzle, through measurement of heat transfer coefficient, visualizations of air flow and heat transfer, and measuremenu of jet velocity and turbulence distribution. The purpose of the trial production was to expand a range of high heat transfer and promote turbulence compared with the current nozzle.

Paying attention to mass transfer within gravure ink coated film, drying characteristic of the film was analyzed by numerical solution of a set of equations governing the drying process in which concentration dependencies 0f the diffusion coefficient and the equilibrium vapor pressure were considered.

Applying these analyses. an industrial scale dryer with excellent drying efficiency has finally been developed.  相似文献   

3.
W. Blumberg 《Drying Technology》1994,12(6):1471-1484
When regarding the atmospheric contact drying of granular beds wetted with a liquid mixture, both the drying rate and the selectivity of the process, i.e. the change of moisture composition, are of interest. The batch drying of a free flowing ceramic substance, wetted with a 2-propanol-water mixture, is investigated in a rotary dryer with heated wall and air flow.

The theoretical analysis is based on physical models for heat and mass transfer, moisture migration and particle transport, which are presented in examples.

The experimental and theoretical results show that higher selectivities can be achieved by reducing the particle size because of the lower liquid-phase mass-transfer resistance. An increase of the rotational speed leads to a higher drying rate with slightly decreased selectivity if the particles are sufficiently small, since contact heat transfer is enhanced.  相似文献   

4.
The purpose of this investigation is to compare various drying models with respect to (a) the accuracy in calculating the material moisture content and temperature versus time and (b) the computation time required.

Mechanistic as well as phenomenological heat and mass transfer models are considered. The mechanistic models are formulated by considering different combinations of mechanisms between (1) moisture diffusion in the solid towards its external surface (2) vaporization and convective transfer of the vapor into the air stream (3) convective heat transfer from the air to the solid's surface (4) conductive heat transfer within the solid mass. The phenomenological model incorporates the drying constant while the mechanistic models incorporate the mass diffusivity, the mass transfer coefficient in the air boundary layer, the thermal conductivity, and the heat transfer coefficient in the air boundary layer.

The proposed methodology is applied to experimental data of four vegetables, namely, potato, onion, carrot, and green pepper. The experiments involve three thickness levels, five temperatures, three water activities, and three air velocities. The results obtained concern (a) the standard deviations between experimental and calculated values of material moisture content andtemperature, which, in combination with the computation time, are the necessary information for model selection for a special application, and (b) the model parameter estimates which are necessary to use the selected model.  相似文献   

5.
The paper presents a study aimed at extending the neural network mapping ability. In traditional modelling, operational process parameters (gas/material temperature, air velocity, etc.) are the inputs and outputs to and from the network. In this approach dimensionless numbers (Re, Ar, H/d) were used as inputs to predict the heat transfer coefficient in a fluidised bed drying process. To produce the data set necessary to train the networks, drying trials of different materials in a fluidised bed were carried out.

A series of simulations were performed and several neural networks structures were tested to find an optimal topology of the network. Training data set contained information only about two materials. The networks were tested using data obtained for the third product.

Performance of the network was satisfactory, however further improvement of mapping ability may be expected after filtration of the testing data.  相似文献   

6.
An experimental investigation was made on the condensation of water steam in a vertical corrugated duct. The data have been correlated as follows

Co=5.11Re-0.431 150 ≤ Re ≤ 350 Co = 0.034311Re-0.425350 ≤Re ≤l000

The vertical corrugated duct is constructed of two corrugated plates with corrugation inclination angles of β = 0 and β = 45° respectively (relative to the overall flow direction).

The condensation heat transfer coefficient in the corrugated duct is more than two times higher than that of bulk condensation on a vertical plate. A physical model was proposed to explain the heat transfer enhancement. Attention was also paid to the effect of exit steam velocity on the heat transfer during partial condensation. It was demonstrated that the heat transfer in the corrugated duct was strongly affected even at a low exit velocity, which was different from the case of bulk condensation on a vertical plate. Experimental apparatuses and the method for examining their reliability are described in detail.  相似文献   

7.
One of possibilities to extend operating efficiency of spray dryers is to increase turbulence of the drying agent flow. In the literature no quantitative data describing this phenomenon are available.

In the paper results of experimental investigations on the effect of turbulence on heat and mass transfer during atomization are discussed. The scope of experiments covered the analysis of changing evaporation capacity. temperature of gas and atomized material and particle size distribution as a function of distance to the atomizer. It was proven that an increase of air flow turbulence could cause 20-25% increase of evaporation capacity.  相似文献   

8.
A study of simultaneous heat and mass transfer during drying an infinite cylinder shape material (twigs of ilex paraguayenais saint hilaire) was carried out. The finite-difference method was used to solve the drying model and a simultaneous heat and mass balance in each node was made. Models with different assumptions were tested and the external mass transfer coefficient was used as a parameter to fit the model to experimental data. The thickness of the node and the time step were selected considering the system stability.

Drying temperature, twig diameter and air velocity were selected as study variables. The models results were in good agreement with experimental measurements giving mass coefficient values between 1.97 10-4and 9.55 10-4 Kg/m2 s.  相似文献   

9.
A nonequilibrium distributed parameter model for rotary drying and cooling processes described by a set of partial differitial equations with nonlinear algebraic constraints is developed in this work. These equations arise from the multi-phase heat and mass balances on a typical rotary dryer. A computational algorithm is devekped by employing a polynonial approximation ( orthogonal collocation) with a glotal splinc technique leading to a differential-algebraic equation ( DAE) system. The numerical solution is carried out by using a standard DAE solver.

The two- phase-flow heat transfer coelficient is computed by introducing a correction factor to the commonly accepted correlations. Since interaction between the falling particles are considered in the correction factor,the results are more reliable than those computed by assuming that heat transfer between a single falling particle and the drying air is unaffected by other particles. The heat transfer computations can be further justified via a study on the analogies between heat and mass transfer.

The general model devloped in this work is mathematically more ritorous yet more flexible that the lumped parameter models established by one of the authors (Douglas et al., (1993)). The three major assumptions of an equilibrium operation, perfect mixing and constant drying raic, are removed in the distributed parameter model.

The simulation results are compared with the operational data from an industrial sugar dryer and predictions from earlier models. The model and algorithm successfully predict the steady state behaviour of rotary dryers and collers. The generalized model can be applied to fertilizer drying processes in which the assumption of constant drying rate is no longer valid and the existing dynamic models are not applicable.  相似文献   

10.
The requirements for drying and thermobonding equipment working on the basis of the hot air flow-through system vary considerably due to the large variety of nonwovens qualities, production methods and required production speeds. It is therefore necessary to construct diverse drying systems in order to be able to offer appropriate machines for the desired purposes. Optimum heat and mass transfer from the penetrating air to the permeable material to be dried is ensured by through-air drying

Following Hans Fleissner's invention of the through-air system for drying of textiles and its practical application in the perforated drum dryer for more than 50 years a second engineering breakthrough for the paper and nonwovens industry has been achieved by Gerold Fleissner with the high-tech through-air drum

This paper presents various possibilities of air flow through the material and provide criteria to facilitate selection of the proper drying system  相似文献   

11.
CFD simulations were carried out to investigate the effects of the module geometry on forced convection in a rectangular channel containing series of regularly spaced non‐conducting baffles with flow oscillation. The simulations were performed at constant wall temperature. Steady‐flow Reynolds numbers Re in the range of 200 and 600 were studied. The results of the CFD simulations show that, for the effect fin spacing to be significant on heat transfer enhancement in finned system with oscillating flow, the oscillating flow velocity must be higher than the mean flow velocity. Superposition of oscillation yields increasing heat transfer performance with increasing fin height. Fin geometry with pyramidal shape yields highest performance in terms of the heat transfer effectiveness.  相似文献   

12.
A mathematical model for the drying rate of granular particles in a multistage inclined fluidized bed(IFB) is presented from the standpoint of simultaneous heat and mass transfer, with taking the effect of mechanical vibration added vertically into consideration.

Steady-state distributions for the temperatures and concentrations of the particles and the heating gas, and for the moisture content of the particles are numerically calculated based on the present model. The calculated results show fairly good agreement with the experimental data, which were obtained from the drying experiments of brick particles in a three-stage IFB using comparatively low temperature air(40-60°C) as the heating gas.

It has been found within the range of the experimental conditions employed that, the mechanical vibration added vertically enhances the over-all drying rate of the particles and its effect can be considered equivalent to an increase in the air velocity.  相似文献   

13.
Due to enhanced transport characteristics, impinging jets are widely used in industry to dry large surface area products such as paper and textiles. The present numerical study concerns the modelling of convective heat transfer for impingement drying. Flow and heat transfer under a confined two dimensional turbulent air jet impinging on a flat surface were modelled by solution of two-dimensional Navier-Stokes and energy equations. The turbulence model used was the high-Re number version of the well known two-equation (κ-ε) model and numerical solution was by the upwind finite difference scheme. The specific objective was to evaluate the accuracy of schemes for modelling the near-wall turbulent flow.

The mean flow properties such as centerline velocity decay and the pressure distribution at the impingement surface show no dependence on the near-wall model used. Heat transfer predictions were found to be quite sensitive to the choice of near-wall model. Best agreement between predictions and experiments was obtained for a Chieng-Launder type model with a new modification, use of kp instead of kv in the calculation of τw.  相似文献   

14.
A paucity of heat transfer rate data for boiling two-phase flow through bends was noted after an extensive literature survey, The present work was undertaken to redress this shortcoming.

A boiling water loop, capable of being operated at pressures up to 1300 kpa, was used. The lest section was in the form of a U-tube with two straight horizontal sections connected by a 180° return bend. Using this loop, pressure drop and heat transfer data were gathered over a wide range of mass and heat fluxes. steam qualities and system pressures.

The data obtained were used to investigate the variation in heal transfer coefficients around the radial positions of the bend. Correlations for heat transfer coefficients for four different radial positions (top. bollom, inside and outside of the bend) have been presented for the first time. A possible explanation for the observed variations in heat transfer coefficients has also been suggested.  相似文献   

15.
The theory of gas absorption accompanied by fast pseudo-fast order reaction which considered dependences of diffusivity, kinetic constant and Henry's law constant on absolute temperature and ionic strength was used to obtain values of effective interfacial areas and mass transfer coefficients in gas and liquid phase.

Experimental measurement of carbon dioxide absorption from mixture with air was performed in a pilot-plant column with expanded metal sheet packing irrigated with sodium hydroxide solution.

Resulting liquid and gas-side mass transfer coefficients are compared with values obtained from physical Absorption measurement of carbon dioxide into water and with measurement of gas-side mass transfer coefficient for sulphur dioxide in the same column.

The differences between determined values are discussed.  相似文献   

16.
The basic differential equations controlling the temperature and concentration field in a single packed bed of fine particles were derived and solved for the general case in which unsteady, two-dimensional heat and mass transfer lakes place with an endothermic process.

The time-change of particle- and fluid-temperature and concentration of water vapor (humidity) were calculated by a numerical method which assumed that the rate of the endothermic process can be expressed by a first-order rate equation and that the fluid flowing through the bed is of the piston flow type.

The experiments were conducted for the drying of silica-gel and the two-stage dehydration reaction of natural gypsum to demonstrate the applicability of the present theoretical analysis.

It has been found that the calculated results show satisfactory agreement with the measured data within the range of the experimental conditions employed.  相似文献   

17.
The evaluation of the heat transfer coefficient hwp between a heat exchanging surface immersed in a gas fluidized bed and the adjacent layer of dense phase particles is analyzed in this contribution. Gas convective and radiant effects are not included in the present analysis.

The inclusion of hwp, or an equivalent formation, in mechanistic models describing heat transfer has been necessary because the sudden voidage variation close to the immersed wall restrains significantly the heat transfer rate. However, there is not at present a widely accepted expression to evaluate hwp.

A precise formulation for hwp accounting for transient conduction inside spherical particles, the Smoluchowski effect, the concentration of particles in the adjacent layer (Np) and an effective separation gap (l0) is developed here.

Although Np can be estimated, in principle, from experimental evidence in packed beds, and it is reasonably expected that l0 = 0, the analysis of experimental heat transfer rates in moving beds, packed beds, and bubbling fluidized beds indicate that values of hwp are, in general, smaller than expected from these assumptions. Appropriate values of l0 and Np are then stimated by fitting the experimental data.

The probable effect of surface asperities is also discussed by analyzing a simplified geometrical model. It is concluded that the parameter l0 can be also effective to account for particle roughness, independently of thermal properties.  相似文献   

18.
TWO-PHASE FLOW HEAT TRANSFER IN A HORIZONTAL STEAM WATER SYSTEM   总被引:1,自引:0,他引:1  
There are various correlations available for predicting heat transfer coefficients during forced convective two-phase flow. The present work was undertaken to gather heat transfer rate data for the steam-water system and to evaluate (and if necessary, to modify) the available correlations in light of those data.

A boiling water loop, capable of being operated at pressures up to 1300 kPa, was used. The test section was in the form of a U-tube with two straight horizontal sections connected by a 180° return bend. Using this loop, accurate pressure drop and heat transfer data were gathered over a wide range of mass and heat fluxes.

The data obtained were used to arrive at an improved correlation for the two-phase convective heat transfer coefficient hpfor steam-water systems at relatively low pressures (800 kPa). The proposed correlation shows hpis a much stronger function of Lockhart-Martinelli parameter than is indicated by most of the other correlations. Among the existing correlations evaluated, the correlation proposed by Davis and David [ 1964] and the one proposed by Dengler and Addoms (1956) fit our data best.  相似文献   

19.
The chlorination of paracresol is used in an experimental study of selectivity in gas-liquid contactors.

Experiments in a batch reactor show the influence on selectivity of the dimensionless numbers presented in Part I and involving competition between mass transfer and chemical reaction together with the hydrodynamics.

The extension of open reactor model presented in Part 1 to the batch reactor permits a comparison between theory and experiments and shows a good agreement  相似文献   

20.
As the economy has been growing in the past decade, consumers in Taiwan start to consider how to raise living quality. As people tend to adopt the westerners' living style of purchasing food once every week or two weeks. Large grocery stores, hence, have been built both in urban and suburban areas. This change results in a growing need of better-designed refrigerator-freezers (RFs). Consequently, consumers need RF models with better or more cooling functions, larger volumetric capacity, and efficient energy use

A 1997 top-mount refrigerator with a volume of about 460 liters was selected as the baseline model. This study used computer aided finite element methods (FEM) to analyse and establish designs for RFs. These designs included different insulation properties and various cool air flow rates and outlets in the freezer and fresh food compartments. The following outcomes were investigated in the simulating work:

•The thermal responses of the insulation material on RF cabinets

•The effect of a modified cool air outlet on the air flow distribution and heat loads

The simulation results were then compared with experimental data. Agreement was found between simulation and experimental results. This suggested that computer-aided simulation could serve as a reliable tool for other designs similar to cases practiced in this RF study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号