首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel‐based composite anode is reported. Carbon‐supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane‐based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion® membrane electrolytes under identical conditions. The borohydride–oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm–2 at 60 °C. The peak power densities of the PVA hydrogel membrane‐based DBFCs were comparable or a little higher than those using Nafion® 212 membranes at 60 °C. The fuel efficiency of borohydride–oxygen fuel cell based on PVA hydrogel membrane and Ni‐based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded.  相似文献   

2.
A direct ethanol fuel cell (DEFC) of 5 cm2 membrane-electrode area was studied systematically by varying the catalyst loading, ethanol concentration, temperature and different Pt based electro-catalysts (Pt–Ru/C, Pt-black High Surface Area (HSA) and Pt/C). A combination of 2 M ethanol at the anode, pure oxygen at the cathode, 1 mg cm−2 of Pt–Ru/C (40%:20%) as the anode and 1 mg cm−2 of Pt-black as the cathode gave a maximum open circuit voltage (OCV) of 0.815 V, a short circuit current density of 27.90 mA cm−2 and a power density of 10.3 mW cm−2. The optimum temperatures of the anode and cathode were determined as 90 °C and 60 °C, respectively. The power density increased with increase in ethanol concentration and catalyst loading at the anode and cathode. However, the power density decreased slightly beyond 2 M ethanol concentration and 1 mg cm−2 catalyst loading at the anode and cathode. These results were validated using cyclic voltammetry at single electrodes under similar conditions to those of the DEFC.  相似文献   

3.
A positive-electrolyte-negative (PEN) assembly solid oxide fuel cell (SOFC) with a thin electrolyte film for intermediate temperature operation was fabricated. Instead of the traditional screen-printing method, both anode and cathode catalysts were pressed simultaneously and formed with the fabrication of nano-composite electrolyte by press method. This design offered some advantageous configurations that diminished ohmic resistance between electrolyte and electrodes. It also increased the proton-conducting rate and improved the performance of SOFCs due to the reduction of membrane thickness and good contact between electrolyte and electrodes. The fabricated PEN cell generated electricity between 600°C and 680°C using H2S as fuel feed and air as oxidant. Maximum power densities 40 mW·cm−2 and 130 mW·cm−2 for the PEN configuration with a Mo-Ni-S-based composite anode, nano-composite electrolyte (Li2SO4+Al2O3) film and a NiO-based composite cathode were achieved at 600°C and 680°C, respectively.  相似文献   

4.
Pt-Pd catalysts were prepared by using the spontaneous deposition method and their characteristics were analyzed in a direct formic acid fuel cell (DFAFC). Effects of calcination temperature and atmosphere on the cell performance were investigated. The calcination temperatures were 300, 400 and 500 °C and the calcination atmospheres were air and nitrogen. The fuel cell with the catalyst calcined at 400 °C showed the best cell performance of 58.8 mW/cm2. The effect of calcination atmosphere on the overall performance of fuel cell was negligible. The fuel cell with catalyst calcined at air atmosphere showed high open circuit potential (OCP) of 0.812 V. Also the effects of anode and cathode catalyst loadings on the DFAFC performance using Pt-Pd (1: 1) catalyst were investigated to optimize the catalyst loading. The catalyst loading had a significant effect on the fuel cell performance. Especially, the fuel cell with anode catalyst loading of 4 mg/cm2 and cathode catalyst loading of 5 mg/cm2 showed the best power density of 64.7 mW/cm2 at current density of 200 mA/cm2. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

5.
Single layer La0.6Sr0.4Co0.2Fe0.8O3 hollow fibre (HF) precursors (<1 mm ID) produced by phase inversion (PI) were sintered at 1,200, 1,350 and 1,400 °C. The increase in sintering temperature resulted in microstructural changes in the LSCF fibres, reflected in their electrical conductivities. LSCF-based cathodes with different designs were brushed onto co-extruded nickel–gadolinium-doped ceria (CGO) anode/CGO electrolyte dual-layer HFs (<1 mm ID) fabricated by PI. The effect of cathode layers on the overall performance of the fuel cells (FCs) was assessed using nearly identical anode and electrolyte compositions, thicknesses, and microstructures. Cathode microstructure design caused cells to perform differently producing peak power densities of 0.35–0.7 W cm−2 at 600 °C. Impedance spectroscopy analysis at 600 °C on the FCs produced 0.12–0.24 Ω cm2 confirming the cathode’s structural effect on the overall area-specific resistance of the FCs. The best performing FC with a brush-deposited cathode was compared to a similar FC where cathode was deposited by dip coating; at 600 °C the first produced 0.6 W cm−2 while the second cell 0.7 W cm−2. Co-extruding anodes and electrolytes by using PI and combining dip coating for cathode deposition could lead to the fabrication of FCs with enhanced microstructures and improved performances.  相似文献   

6.
Power from marine sediment fuel cells: the influence of anode material   总被引:2,自引:0,他引:2  
The effect of anode material on the performance of microbial fuel cells (MFC), which utilise oxidisable carbon compounds and other components present in sediments on ocean floors, estuaries and other similar environments is reported. The MFC anode materials were carbon sponge, carbon cloth, carbon fibre, and reticulated vitreous carbon (RVC). Power was produced through the microbial activity at the anode in conjunction with, principally, oxygen reduction at a graphite cloth cathode. After a period of stabilisation, open circuit voltages up to 700 mV were observed for most cells. Steady state polarisations gave maximum power densities of 55 mW m−2 using carbon sponge as the anode; which was nearly twice that achieved with carbon cloth. The latter material typically gave power densities of around 20 mW m−2. The performance of the cell was reduced by operation at a low temperature of 5 °C. Generally, for cells which were capable of generating power at current densities of 100 mA m−2 and greater, mass transport was found to limit both the anode and the cathode performance, due primarily to the low concentrations of electro-active species present or generated in cells.  相似文献   

7.
Electrostatic spray deposition (ESD) was applied to fabricate a thin-layer of yttria-stabilized zirconia (YSZ) electrolyte on a solid oxide fuel cell (SOFC) anode substrate consisting of nickel-YSZ cermet. A colloidal solution of 8 mol% YSZ in ethanol was sprayed onto the substrate anode surface at 250–300 °C by ESD. After sintering the deposited layer at 1250–1400 °C for 1–2 h depending on temperature, the cathode layer, consisting of lanthanum strontium manganate (LSM), was sprayed or brush coated onto the electrolyte layer. Performance tests and AC impedance measurements of the complete cell were carried out at 800 °C to evaluate the density and conductance of the electrolyte layer formed by ESD. With a 97% H2/3% H2O mixture and air as fuel and oxidant gas, respectively, the open-circuit voltage (OCV) was close to theoretical and electrolyte impedance was about 0.23Ω cm2. A power density of 0.45 W cm−2 at 0.62 V was obtained. No abnormal degradation was observed after 170 h operation. The electrolyte sintering temperature and time did not significantly affect the electrolyte impedance. on leave from  相似文献   

8.
LaNi0.9Ru0.1O3 as cathode catalyst for a direct borohydride fuel cell (DBFC) was synthesized and investigated for the first time. The electrochemical experiments indicated that perovskite-type oxide LaNi0.9Ru0.1O3 exhibited higher electrochemical performance compared with LaNiO3, which suggested incorporation of element Ru into LaNiO3 could further improve the catalytic ability for oxygen reduction reaction (ORR) in alkaline solution. LaNi0.9Ru0.1O3 catalyst was found to have good tolerance of BH4. Meanwhile the maximum power density of 171 mW cm−2 was obtained at 65 °C without using any precious ion exchange membrane. A life test indicated that the DBFC displayed no significant degradation for about 70 h testing. The electrochemical data suggested that LaNi0.9Ru0.1O3, which provided a simple way to construct DBFCs without using any ion exchange membrane, might be promising cathode catalyst with high performance and low cost for DBFCs.  相似文献   

9.
A mathematical model was developed and used to predict the performance of direct propane phosphoric acid (PPAFC) fuel cells, utilizing both Pt/C state-of the-art electrodes and older Pt black electrodes. It was found that the overpotential caused by surface processes on the platinum catalyst in the anode is much greater than the potential losses caused by either ohmic resistance or propane diffusion in gas-filled and liquid-filled pores. In one comparison, the anode overpotential (0.5 V) was larger than the cathode overpotential (0.3 V) at a current density of 0.4 A cm−2 for Pt loadings 4 mg Pt cm−2. The need for sufficient water concentration at the anode, where water is a reactant, was indicated by the large effect of H3PO4 concentration. In another comparison, the model predicted that at 0.2 A cm−2, modern carbon supported Pt catalysts would produce 0.35 V compared to 0.1 V for unsupported Pt black catalysts that were used several decades ago, when the majority of the research on direct hydrocarbon fuel cells was performed. The propane anode and oxygen cathode catalyst layers were modeled as agglomerates of spherical catalyst particles having their interior spaces filled with liquid electrolyte and being surrounded by gas-filled pores. The Tafel equation was used to describe the electrochemical reactions. The model incorporated gas and liquid-phase diffusion equations for the reactants in the anode and cathode and ionic transport in the electrolyte. Experimental data were used for propane and oxygen diffusivities, and for their solubilities in the electrolyte. The accuracy of the predicted electrical potentials and polarization curves were normally within ±0.02 V of values reported in experimental investigations of temperature and electrolyte concentration. Polarization curves were predicted as a function of temperature, pressure, electrolyte concentration, and Pt loading. A performance of 0.45 V at 0.5 A cm−2 was predicted at some conditions.  相似文献   

10.
The paper presents electrochemical measurements carried out in a PEMFC with a view to determining the separate kinetics of the electrode reactions. For this purpose, the separate response of one electrode (anode or cathode) was magnified by dilution of the reacting gas, respectively hydrogen and oxygen, and comparison of the experimental data in the form of steady voltage-current variations and impedance spectra. Experiments were carried out at 60 °C and ambient pressure. Water management was thoroughly controlled so that the gases leaving the cell had the same relative humidity in all experiments of one series. Hydrogen oxidation, although rapid, corresponds to overpotentials up to 50 mV at high dilution rates and current densities. Assuming a Tafel–Volmer mechanism, the exchange current density of the anode reaction at the Pt surface is of the order of 1 mA cm−2. The two techniques employed led to Tafel slopes of oxygen reduction ranging from 120 to 150 mV/decade, with an exchange current density near 1 μA cm−2, in good agreement with published data.  相似文献   

11.
J. Ma  Y. Liu  Y. Liu  Y. Yan  P. Zhang 《Fuel Cells》2008,8(6):394-398
Direct borohydride fuel cell (DBFC) is one of the most exciting energy technologies that solve the hydrogen storage and safety issues by using aqueous solution of KBH4 or NaBH4. Here, we present a membraneless DBFC with perovskite‐type oxide LaNiO3/C‐catalysed cathode. A significant finding from the electrochemical experiments is that it obviously shows that the existence of ions has almost no negative influence on the discharge performances of the LaNiO3‐catalysed cathode. Therefore, the DBFC is designed without using an ion exchange membrane. The maximal power density of 127 mW cm–2 is obtained at 65 °C under atmospheric pressure. A 500 h life test shows that the DBFC has good stability.  相似文献   

12.
A novel PVA/Hydroxyapatite (HAP) composite polymer membrane was prepared by the direct blend process and solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were investigated using thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and the AC impedance method. An alkaline direct ethanol fuel cell, consisting of an air cathode with MnO2 carbon inks based on Ni-foam, an anode with PtRu black on Ni-foam, and the PVA/HAP composite polymer membrane, was assembled and investigated. It was found that the alkaline direct ethanol fuel cell comprising of a novel cheap PVA/HAP composite polymer membrane showed an improved electrochemical performance in ambient temperature and air. As a result, the maximum power density of the alkaline DEFC, using a PtRu anode based on Ni-foam (10.74 mW cm−2), is higher than that of DEFC using an E-TEK PtRu anode based on carbon (7.56 mW cm−2) in an 8M KOH + 2M C2H5OH solution at ambient temperature and air. These PVA/HAP composite polymer membranes are a potential candidate for alkaline DEFC applications.  相似文献   

13.
Incorporation of silica particles through a sol-gel process into the anode-catalyst layer with a sol-gel modified Nafion-silica composite membrane renders easy retention of back-diffused water from the cathode to anode through the composite membrane electrolyte, increases the catalyst-layer wettability and improves the performance of the Polymer Electrolyte Fuel Cell (PEFC) while operating under relative humidity (RH) values ranging between 18% and 100% with gaseous hydrogen and oxygen reactants at atmospheric pressure. A peak power density of 300 mW cm−2 is achieved at a load current-density value of 1200 mA cm−2 for the PEFC employing a sol-gel modified Nafion-silica composite membrane and operating at 18% RH. Under similar operating conditions, the PEFC with a Membrane Electrode Assembly (MEA) comprising Nafion-silica composite membrane with silica in the anode-catalyst layer delivers a peak power density of 375 mW cm−2. By comparison, the PEFC employing commercial Nafion membrane fails to deliver satisfactory performance at 18% RH due to the limited availability of water at its anode, acerbated electro-osmotic drag of water from anode to cathode and insufficient water back diffusion from cathode to anode causing the MEA to dehydrate.  相似文献   

14.
Composite cathodes with La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) and Ce0.9Gd0.1O1.95 (GDC) are investigated to assess for solid oxide fuel cell (SOFC) applications at relatively low operating temperatures (650–800 °C). LSCF with a high surface area of 55 m2g−1 is synthesized via a complex method involving inorganic nano-dispersants. The fuel cell performances of anode-supported SOFCs are characterized as a function of compositions of GDC with a surface area of 5 m2g−1. The SOFCs consist of the following: LSCF-GDC composites as a cathode, GDC as an interlayer, yttrium stabilized zirconia (YSZ) as an electrolyte, Ni-YSZ (50: 50 wt%) as an anode functional layer, and Ni-YSZ (50: 50 wt%) for support. The cathodes are prepared for 6LSCF-4GDC (60: 40 wt%), 5LSCF-5GDC (50: 50 wt%), and 4LSCF-6GDC (40: 60 wt%). The 5LSCF-5GDC cathode shows 1.29 Wcm−2, 0.97 Wcm−2, and 0.47 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. The 6LSCF-4GDC shows 0.92 Wcm−2, 0.71 Wcm−2, and 0.54 Wcm−2 at 780 °C, 730 °C, and 680 °C, respectively. At 780 °C, the highest fuel cell performance is achieved by the 5LSCF-5GDC, while at 680 °C the 6LSCF-4GDC shows the highest performance. The best composition of the porous composite cathodes with LSCF (55 m2g−1) and GDC (5 m2g−1) needs to be considered with a function of temperature.  相似文献   

15.
Iron(III) oxide tablets were electrolytically reduced to iron in molten sodium hydroxide at 530 °C and recovered to produce iron with 2 wt.% oxygen suitable for re-melting. The cell was operated at 1.7 V and an inert nickel anode was used. The thermodynamics and mechanism of the process was also investigated. By controlling the activity of sodium oxide in the melt, the cell could be operated below the decomposition voltage of the electrolyte with the net sequence of events being the ionization of oxygen, its subsequent transport to the anode and discharge leaving behind iron at the cathode. A reduction time of 1 h was achieved for a 1 g oxide tablet (close to the theoretical reduction time predicted by Faraday’s laws) at a current density of 520 mA cm−2 with iron phase yields of ∼90 wt.%. The energy consumption was 2.8 kWh kg−1.  相似文献   

16.
A comparative investigation of direct borohydride fuel cell polarization behavior (DBFC) was carried out with respect to the effect of unsupported and supported PtRu anode catalysts using as supports both Vulcan XC-72R and graphite felt (GF). The Vulcan XC-72R-supported catalyst alleviated mass-transfer-related problems associated with hydrogen generation from borohydride hydrolysis taking place mainly on the Ru sites. However, the most significant improvement was obtained by using the three-dimensional GF support. Typically 1.0 mg cm?2 PtRu was galvanostatically electrodeposited by a surfactant templated method on compressed graphite felt of 350 μm thickness. The PtRu/GF anode (Pt:Ru atomic ratio of 1.4:1) generated a DBFC peak power density of 130 mW cm?2 at 333 K. The separator in the DBFC was a Nafion® 117 membrane. The peak power density of the PtRu/GF was 270% and 60% higher compared with the catalyst-coated membrane configuration with unsupported PtRu and PtRu/Vulcan XC-72R, respectively.  相似文献   

17.
Ethanol is one of the promising future fuels of Direct Alcohol Fuel Cells (DAFC). The electro‐oxidation of ethanol fuel on anode made of carbon‐supported Pt‐Ru electrode catalysts was carried out in a lab scale direct ethanol fuel cell (DEFC). Cathode used was Pt‐black high surface area. The membrane electrode assembly (MEA) was prepared by sandwiching the solid polymer electrolyte membrane, prepared from Nafion® (SE‐5112, DuPont USA) dispersion, between the anode and cathode. The DEFC was fabricated using the MEA and tested at different catalyst loadings at the electrodes, temperatures and ethanol concentrations. The maximum power density of DEFC for optimized value of ethanol concentration, catalyst loading and temperature were determined. The maximum open circuit voltage (OCV) of 0.815 V, short circuit current density (SCCD) of 27.90 mA/cm2 and power density of 10.30 mW/cm2 were obtained for anode (Pt‐Ru/C) and cathode (Pt‐black) loading of 1 mg/cm2 at a temperature of 90°C anode and 60°C cathode for 2M ethanol.  相似文献   

18.
The microbial fuel cell (MFC) has attracted research attention as a biotechnology capable of converting hydrocarbon into electricity production by using metal reducing bacteria as a biocatalyst. Electricity generation using a microbial fuel cell (MFC) was investigated with acetate as the fuel and Geobacter sulfurreducens as the biocatalyst on the anode electrode. Stable current production of 0.20–0.24 mA was obtained at 30–32 °C. The maximum power density of 418–470 mW/m2, obtained at an external resistor of 1,000 Ω, was increased over 2-fold (from 418 to 866 mW/m2) as the Pt loading on the cathode electrode was increased from 0.5 to 3.0 mg Pt/cm2. The optimal batch mode temperature was between 30 and 32 °C with a maximum power density of 418–470 mW/m2. The optimal temperature and Pt loading for MFC were determined in this study. Our results demonstrate that the cathode reaction related through the Pt loading on the cathode electrode is a bottleneck for the MFC’s performance.  相似文献   

19.
IrO2–RuO2, IrO2–Pt and IrO2–Ta2O5 electrocatalysts were synthesized and characterized for the oxygen evolution in a Solid Polymer Electrolyte (SPE) electrolyzer. These mixtures were characterized by XRD and SEM. The anode catalyst powders were sprayed onto Nafion 117 membrane (catalyst coated membrane, CCM), using Pt catalyst at the cathode. The CCM procedure was extended to different in-house prepared catalyst formulations to evaluate if such a method could be applied to electrolyzers containing durable titanium backings. The catalyst loading at the anode was about 6 mg cm−2, whereas 1 mg cm−2 Pt was used at the cathode. The electrochemical activity for water electrolysis was investigated in a single cell SPE electrolyzer at 80 °C. It was found that the terminal voltage obtained with Ir–Ta oxide was slightly lower than that obtained with IrO2–Pt and IrO2–RuO2 at low current density (lower than 0.15 A cm−2). At higher current density, the IrO2–Pt and IrO2–RuO2 catalysts performed better than Ir–Ta oxide.  相似文献   

20.
A 100 A continuous ‘flow-by’ chlor-alkali membrane reactor was constructed with both anode and cathode consisting of fixed beds of 0.6 to 1 mm diameter graphite particles. The reactor was operated over a range of conditions with and without co-current flow of air or oxygen to the cathode. With an anolyte of 5 M NaCl and catholyte 1.4–3 M NaOH the reactor produced sodium hydroxide and chlorine with ≥80% efficiency at temperatures 28–100°C, absolute pressure 270–970 kPa and superficial current density up to 3.3 kA m?2. For operation at 100°C and an average pressure of 870 kPa with no gas delivered to the cathode, the cell voltage increased linearly from 2.5V at 0.3 kA m?2 (10 A) to 4.0 V at 3.3 kA m?2 (100 A). When oxygen was delivered to the cathode at 1 litre min?1 under 870 kPa average pressure, the corresonding cell voltages were 1.6 V at 0.3 kA m?2 to 3.4 V at 3.3 kA m?2. In operation with air under the same conditions the cell voltage rose from 1.6 V at 0.3 kA m?2 to 3.1 V at 1.6 kA m?2. The performance of the oxygen cathode deteriorated with lower pressure and temperature due to mass transfer constraints on the oxygen reaction in the fixed bed electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号