首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)TiO3 (A=Zr, Sn) ceramics were investigated with regard to substitution of Ba for Mg of A-site. The microwave dielectric properties were correlated with the Ba content. With an increase in Ba content from 0.01 to 0.1, the dielectric constant and the τf value increased, but the Q×f value decreased. The sintered (BaxMg1−x)(Zr0.05Ti0.95)TiO3 (called BxMZT) ceramics had a permittivity in the range of 19.1−20.6, quality factor from 180,000 to 25,000 GHz, and variation in temperature coefficient of resonant frequency from −35 to −39 ppm/°C with increasing composition x. For sintered (BaxMg1−x)(Sn0.05Ti0.95)TiO3 (called BxMST) ceramics, the dielectric constant increased from 19 to 20.5, Q×f value increased from 120,000 to 37,000 (GHz), and the τf value increased from −50 to −3.3 ppm/°C as the x increased from 0.01 to 0.1. When A=Sn and x=0.1, (Ba0.1Mg0.9)(Sn0.05Ti0.95)TiO3 ceramics exhibited dielectric constant of 20.5, Q×f value of 37,000 (GHz), and a near-zero τf value of −3.3 ppm/°C sintered at 1210 °C for 4 h.  相似文献   

2.
The microwave dielectric properties of La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics prepared by the conventional solid-state method were investigated for application in mobile communication. A 100 °C reduction of the sintering temperature was obtained by using CuO as a sintering aid. A dielectric constant of 20.0, a quality factor (Q × f) of 50,100 GHz and a temperature coefficient of resonant frequency τf of −78.3 ppm/°C were obtained when La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics with 0.25 wt.% CuO were sintered at 1500 °C for 4 h.  相似文献   

3.
The diopside ceramics with a formula of Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6 (x=0.01–0.3) were synthesized via a traditional solid-state reaction method, and their solid solubility, sintering behavior and microwave dielectric properties were investigated. The results revealed that the solubility limit of Al2O3 in Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6, which is defined as x, was between 0.15 and 0.2, and a second phase of CaAl2SiO6 presented when the x value reached 0.2. Appropriate Al3+ substitution for Mg2+ and Si4+ could promote the sintering process and lower the densification temperature, and a broadened densification temperature range of 1250–1300 °C was obtained for the compositions of x=0.08–0.15. With the increase of the x value, the dielectric constant (εr) increased roughly linearly, and the temperature coefficient of frequency (τf) showed a rising trend. The Q×f values increased from 57,322 GHz to 59,772 GHz as the x value increased from 0.01 to 0.08, and then they were saturated in the range of x=0.08–0.2. Further increase of the x value (x≥0.25) deteriorated the microwave dielectric properties. Good microwave dielectric properties of εr=7.89, Q×f=59,772 GHz and τf=−42.12 ppm/°C were obtained for the ceramics with the composition of x=0.08 sintered at 1275 °C.  相似文献   

4.
In this study, the effects of CaTiO3 addition on the sintering characteristics and microwave dielectric properties of BiSbO4 were investigated. Pure BiSbO4 achieved a sintered density of 8.46 g/cm3 at 1100 °C. The value of sintered density decreased with increasing CaTiO3, and sintering at a temperature higher than 1100 °C led to a large weight loss (>2 wt%) caused by the volatile nature of the compound. Samples either sintered above 1100 °C or with a CaTiO3 content exceeding 3 wt% showed poor densification. SEM micrographs revealed microstructures with bimodal grain size distribution. The size of the smaller grains ranged from 0.5 to 1.2 μm and that of the larger grains between 3 and 7 μm. The microwave dielectric properties of the (1−x) BiSbO4−x CaTiO3 ceramics are dependent both on the x value and on the sintering temperature. The 99.0 wt% BiSbO4–1.0 wt% CaTiO3 ceramic sintered at 1100 °C reported overall microwave dielectric properties that can be summarized as εr≈21.8, Q×f≈61,150 GHz, and τf≈−40.1 ppm/°C, all superior to those of the BiSbO4 ceramics sintered with other additives.  相似文献   

5.
Single-phase dielectric ceramics Li2CuxZn1−xTi3O8 (x=0–1) were synthesized by the conventional solid-state ceramic route. All the solid solutions adopted Li2MTi3O8 cubic spinel structure in which Li/M and Ti show 1:3 order in octahedral sites whereas Li and M are distributed randomly in tetrahedral sites with the degree of Li/M cation mixing varying from 0.5 to 0.3. The substitution of Cu for Zn effectively lowered the sintering temperatures of the ceramics from 1050 to 850 °C and significantly affected the dielectric properties. As x increased from 0 to 0.5, τf gradually increased while the dielectric constant (εr) and quality factor value (Q×f) gradually decreased, and a near-zero τf of 1.6 ppm/°C with εr of 25.2, Q×f of 32,100 GHz could be achieved for Li2Cu0.1Zn0.9Ti3O8 ceramic sintered at 950 °C, which make it become an attractive promising candidate for LTCC application. As x increases from 0.5 to 1, the dielectric loss significantly increases with AC conductivity increasing up to 2.3×10−4 S/cm (at 1 MHz).  相似文献   

6.
SnO2-doped CaSiO3 ceramics were successfully synthesized by a solid-state method. Effects of different SnO2 additions on the sintering behavior, microstructure and dielectric properties of Ca(Sn1−xSix)O3 (x=0.5–1.0) ceramics have been investigated. SnO2 improved the densification process and expanded the sintering temperature range effectively. Moreover, Sn4+ substituting for Si4+ sites leads to the emergence of Ca3SnSi2O9 phase, which has a positive effect on the dielectric properties of CaO–SiO2–SnO2 materials, especially the Qf value. The Ca(Sn0.1Si0.9)O3 ceramics sintered at 1375 °C possessed good microwave dielectric properties: εr =7.92, Qf =58,000 GHz and τf=−42 ppm/°C. The Ca(Sn0.4Si0.6)O3 ceramics sintered at 1450 °C also exhibited good microwave dielectric properties of εr=9.27, Qf=63,000 GHz, and τf=−52 ppm/°C. Thus, they are promising candidate materials for millimeter-wave devices.  相似文献   

7.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

8.
Bi2O3 was selected as liquid phase sintering aid to lower the sintering temperature of La(Mg0.5Ti0.5)O3 ceramics. The sintering temperature of La(Mg0.5Ti0.5)O3 ceramics is generally high, about 1600 °C. However, the sintering temperature was significantly lowered about 275 °C from 1600 °C to 1325 °C by incorporating in 15 mol% Bi2O3 and revealed the optimum microwave dielectric properties of dielectric constant (?r) value of 40.1, a quality factor (Q × f) value of 60,231 GHz, and the temperature coefficient (τf) value of 70.1 ppm/°C. During all addition ranges, the relative dielectric constants (?r) were different and ranged from 32.0 to 41.9, the quality factors (Q × f) were distributed in the range of 928–60,231 GHz, and the temperature coefficient (τf) varies from 0.3 ppm/°C to 70.3 ppm/°C. Noticeably, a nearly zero τf can be found for doping 5 mol% Bi2O3 sintering at 1325 °C. It implies that nearly zero τf can be achieved by appropriately adjusting the amount of Bi2O3 additions and sintering temperature for La(Mg0.5Ti0.5)O3 ceramics.  相似文献   

9.
Microwave dielectric properties of PTFE/CaTiO3 polymer ceramic composites   总被引:1,自引:0,他引:1  
CaTiO3 ceramic powder filled polytetrafluoroethylene (PTFE) composites with various filler volume fractions up to 60 vol.% were prepared. The effects of volume fraction of the ceramic filler on the microstructure and microwave dielectric properties of the composites were investigated in detail. As the volume fraction of the ceramic filler increases, the dielectric constant (?r) and the temperature coefficient of resonant frequency (τf) of composites increase, while the product of quality factor and frequency (Q × f) decreases. Composites with 40 vol.% CaTiO3 exhibited good microwave dielectric properties: ?r = 13 at ∼5 GHz, Q × f = 930 GHz, and τf = 260 ppm/°C. Different mixing rules were used to predict the dielectric constant of composites, and it was found that the dielectric constants predicted by Effective Medium Theory (EMT) were in good agreement with experimental data.  相似文献   

10.
Microwave dielectric properties of (1 − x)BaZn2Ti4O11-xBaNd2Ti4O12 (x = 0-1.0) ceramics were investigated by the solid-state reaction with the purpose of finding a microwave ceramics with high dielectric constant (?r), high quality factor (Q × f) and low temperature coefficient of resonant frequency (τf). A two phase system BaZn2Ti4O11-BaNd2Ti4O12 was formed and SEM photographs show equiaxed BaZn2Ti4O11 grains and columnar BaNd2Ti4O12 grains. The microwave dielectric properties were strongly determined by the chemical composition. As increasing x from 0 to 1.0, the phase composition varied from pure BaZn2Ti4O11, to the two phase system BaZn2Ti4O11-BaNd2Ti4O12 and then to pure BaNd2Ti4O12. Therefore, the ?r raised from 29.1 to 82.0 and the Q × f values decreased from 54,630 GHz to 8110 GHz, and the τf values increased from −29 ppm/°C to 94 ppm/°C. 0.8BaZn2Ti4O11-0.2BaNd2Ti4O12 ceramics sintered at 1250 °C for 2.5 h had ?r = 39.1, Q × f = 37,850 GHz and τf = −9 ppm/ °C.  相似文献   

11.
Microwave ceramics of Ba4(Nd0.7Sm0.3)9.33Ti18O54 with 0–3 wt% Ag additions were synthesized by a citrate sol–gel method. The BaO–B2O3–SiO2 glass was also added into the sol–gel derived BNST ceramic powders as sintering aids. The undoped, Ag- and BaBS-doped samples can be sintered at 1250 °C, 1150 °C and 1000 °C, respectively. The microstructure and dielectric properties were then controlled by doping Ag or BaBS glass. Near isoaxial grains with about 250 nm and typical columnar grains were obtained for the silver-doped and BaBS-doped samples, respectively. For the <1 wt% silver-doped samples, the dielectric constant and Q × f retained unaltered but τf decreased from 9 ppm/°C to 1.4 ppm/°C. With increasing silver content from 1 wt% to 3 wt%, the dielectric constant and τf significantly increased but Q × f decreased. For the BaBS-doped samples, both dielectric constant and Q × f decreased but τf increased with increasing BaBS content.  相似文献   

12.
Ce2(WO4)3 ceramics have been synthesized by the conventional solid-state ceramic route. Ce2(WO4)3 ceramics sintered at 1000 °C exhibited ?r = 12.4, Qxf = 10,500 GHz (at 4.8 GHz) and τf = −39 ppm/°C. The effects of B2O3, ZnO–B2O3, BaO–B2O3–SiO2, ZnO–B2O3–SiO2 and PbO–B2O3–SiO2 glasses on the sintering temperature and microwave dielectric properties of Ce2(WO4)3 were investigated. The Ce2(WO4)3 + 0.2 wt% ZBS sintered at 900 °C/4 h has ?r = 13.7, Qxf = 20,200 GHz and τf = −25 ppm/°C.  相似文献   

13.
The sinterability, phase compositions, and microwave dielectric properties of LiF-doped nonstoichiometric CaSnxSiO(3+2x) ceramics prepared by the solid-state reaction were investigated. LiF addition effectively reduced the sintering temperature of CaSnxSiO(3+2x) ceramics and inhibited the volatilization of Sn. A pure monoclinic CaSnSiO5 phase was achieved in the 1.0?wt% LiF-doped CaSn0.94SiO4.88 ceramics sintered at 1175?°C, which exhibited good microwave dielectric properties of εr =?11.6, Q?×?f?=?34000?GHz, and τf =?+73.2?ppm/°C. The positive τf value was an atypical and important phenomenon for low-permittivity microwave dielectric ceramics, which could be a promising τf compensator.  相似文献   

14.
The effect of WO3 addition on the phase formation, the microstructures and the microwave dielectric properties of 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics system were investigated. Formation of second phase MgTi2O5 could be effectively restrained through the addition of WO3, but should be in right amount. WO3 as additives could not only effectively lower the sintering temperature of the ceramics to 1310 °C, but also promote the densification. A dielectric constant εr of 20.02, a Q×f value of 62,000 (at 7 GHz), and a τf value of −5.1 ppm/°C were obtained for 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics with 0.5 wt% WO3 addition sintered at 1310 °C.  相似文献   

15.
Doped hexagonal BaTiO3 (h-BaTiO3) ceramics have recently been identified as potential candidates for use in microwave dielectric resonators. However, similar to other common microwave ceramics, doped h-BaTiO3 ceramics require a sintering temperature higher than 1400 °C. In this study, the effects of Bi2O3 and Li2CO3 on the densification, microstructural evolution and microwave properties of hexagonal 12R-Ba(Ti0.5Mn0.5)O3 ceramics were examined. Results indicate that Bi2O3 and Li2CO3 are able to effectively reduce the sintering temperature of 12R-Ba(Ti05Mn0.5)O3 ceramics through liquid phase sintering while retaining the hexagonal structure and the microwave dielectric properties. The best results were obtained for the 12R-Ba(Ti0.5Mn0.5)O3 with the additions of 5 wt% Bi2O3 sintered at 1200 °C (?r: 36.0, Qfr: 6779 GHz, and τf: 25.3 ppm/°C), and 5 wt% Li2CO3 sintered at 1200 °C (?r: 28.1, Qfr: 5304 GHz, and τf: 35.3 ppm/°C).  相似文献   

16.
Ba4Nd9.33Ti18O54·x wt%Al2O3 (BNT-A) ceramics (x=0, 0.5, 1.0, 1.5, 2.0, 2.5) were prepared by the conventional solid state reaction. The effects of Al2O3 on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 (BNT) ceramics were investigated. X-ray diffraction and backscatter electronic images showed that the Al2O3 additive gave rise to a second phase BaAl2Ti5O14 (BAT). The formation mechanism and grain growth of the BAT phase were first discussed. Dielectric property test revealed that the Al2O3 additive had improved the dielectric properties of the BNT ceramics: increased the Q×f value from 8270 to 12,180 GHz and decreased the τf value from 53.4 to 11.2 ppm/°C. A BNT-A ceramic with excellent dielectric properties: εr=70.2, Q×f=12,180 GHz, τf=20 ppm/°C was obtained with 2.0 wt% Al2O3 added after sintering at 1320 °C for 4 h.  相似文献   

17.
The optical properties and microwave dielectric properties of transparent polycrystalline MgAl2O4 ceramics sintered by spark plasma sintering (SPS) through homemade nanosized MgAl2O4 powders at temperatures between 1250 °C and 1375 °C are discussed. The results indicate that, with increasing sintering temperatures, grain growth and densification occurred up to 1275 °C, and above 1350 °C, rapid grain and pore growth occurred. The in-line light transmission increases with the densification and decreases with the grain/pore growth, which can be as high as 70% at the wavelength of 550 nm and 82% at the wavelength of 2000 nm, respectively. As the sintering temperature increases, Q×f and dielectric constant εr values increase to maximum and then decrease respectively, while τf value is almost independent of the sintering temperatures and remains between −77 and −71 ppm/°C. The optimal microwave dielectric properties (εr=8.38, Q×f=54,000 GHz and τf=−74 ppm/°C) are achieved for transparent MgAl2O4 ceramics produced by spark plasma sintering at 1325 °C for 20 min.  相似文献   

18.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

19.
The phenomena of liquid phase sintering in the V2O5 modified (Zr0.8, Sn0.2)TiO4 (ZST) microwave ceramics has been investigated by using transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The amounts of second phase were too low to be detected by X-ray diffraction (XRD), but could be observed by TEM bright field image. However, the presence of grain boundary phases did not degrade the microwave properties of V2O5 modified ZST ceramics. The ?r value of 37.2, Q × f value of 51,000 (at 7 GHz) and τf value of −2.1 ppm/°C were obtained for ZST ceramics with 1 wt% V2O5 addition sintered at 1300 °C.  相似文献   

20.
(1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics were synthesized at 1500 °C for 3 h using the solid-state reaction at a heating rate from 1 to 7 °C/min. The effects of heating rate on the microstructure, phase composition and oxidation state of titanium in the ceramics were investigated. The XRD results show that this system is composed of two phases, i.e. ZnAl2O4 spinel and rutile. The “black core” phenomenon resulting from reduction of Ti4+ ion valence appears after the ceramics are sintered at the speed of 1 and 3 °C/min. As the heating rate increases, the density and quality factor (Q·f) increase initially and reach the maximum value when the heating rate is 5 °C/min, and then reduce quickly to the minimum, while the dielectric constant (?r) and temperature coefficient of resonator frequency (τf) nearly do not change. The optimal microwave dielectric properties can be achieved in (1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics sintered at a heating rate of 5 °C/min with an ?r value of 11.6, a Q·f value of 74,000 GHz (at about 6.5 GHz), and a τf value of −0.4 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号