首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This paper presents an investigation of the applicability of a genetic approach for solving the construction site layout problem. This problem involves coordinating the use of limited site space to accommodate temporary facilities so that transportation cost of materials is minimized. The layout problem considered in this paper is characterized by affinity weights used to model transportation costs between facilities and by geometric constraints that limit their relative positions on site. The proposed genetic algorithm generates an initial population of layouts through a sequence of mutation operations and evolves the layouts of this population through a sequence of genetic operations aiming at finding an optimal layout. The paper concludes with examples illustrating the strength and limitations of the proposed algorithm in the cases of (1) loosely versus tightly constrained layouts with equal levels of interaction between facilities; (2) loosely versus tightly packed layouts with variable levels of interactions between facilities; and (3) loosely versus tightly constrained layouts. In most problems considered where the total-objects-to-site-area ratio did not exceed 60%, the algorithm returned close to optimal solutions in a reasonable time.  相似文献   

2.
The use of modular construction has gained wide acceptance in the industry. For a specific construction facility layout problem such as site precast standardized modular units, it requires the establishment of an on-site precast yard. Arranging the precast facilities within a construction site presents real challenge to site management. This complex task is further augmented with the involvement of several resources and different transport costs. A genetic algorithm (GA) model was developed for the search of a near-optimal layout solution. Another approach using mixed-integer programming (MIP) has been developed to generate optimal facility layout. These two approaches are applied to solve with an example in this paper to demonstrate that the solution quality of MIP outperforms that of GA. Further, another scenario with additional location constraints can also be solved readily by MIP, which, however, if modeled by GA, the solution process would be complicated. The study has highlighted that MIP can perform better than GA in site facility layout problems in which the site facilities and locations can be represented by a set of integer variables.  相似文献   

3.
Construction site layout is concerned with the existence, positioning, and timing of the temporary facilities that are used to carry out a construction project. Typically these problems are very complicated to formulate and difficult to solve. They are, however, very important to virtually any construction project, since the site layout can significantly affect the cost of the project. This paper describes the general site layout problem from both a theoretical and a practical point of view. It proposes genetic algorithms as a possible solution technique and includes a theoretical example of positioning temporary facilities. This is extended to a practical problem in which the cost of movement is modeled realistically using an augmented genetic algorithm. Some preliminary conclusions are drawn for the application of genetic algorithms to construction site layout problems.  相似文献   

4.
A good site layout is vital to ensure the safety of the working environment and effective and efficient operations. Site layout planning has significant impacts on productivity, costs, and duration of construction. Construction site layout planning involves identifying, sizing, and positioning temporary and permanent facilities within the boundary of the construction site. Site layout planning can be viewed as a complex optimization problem. Although construction site layout planning is a critical process, systematical analysis of this problem is always difficult because of the existence of a vast number of trades and interrelated planning constraints. The problem has been solved using two distinct approaches: Optimization techniques and heuristics methods. Mathematical optimization procedures have been developed to produce optimal solutions, but they are only applicable for small-size problems. Artificial intelligent techniques have been used practically to handle real-life problems. On the other hand, heuristic methods have been used to produce good but not optimal solutions for large problems. In this paper, an optimization model has been developed for solving the site layout planning problem considering safety and environmental issues and actual distance between facilities. Genetic algorithms are used as an optimization bed for the developed model. In order to validate the performance of the developed model, a real-life construction project was tested. The obtained results proved that satisfactory solutions were obtained.  相似文献   

5.
Construction operations in airport expansion projects often attract wildlife species to critical airport traffic areas leading to an increase in the risk of wildlife–aircraft collision accidents. Airport operators and construction planners need to carefully consider and minimize these wildlife hazards during the planning of construction site layouts in order to comply with Federal Aviation Administration recommendations. This paper presents the development of an advanced optimization model for planning airport construction site layouts that is capable of minimizing the hazards of wildlife attractants and minimizing the site layout costs, simultaneously. The model incorporates newly developed concepts and performance criteria that enable (1) quantifying, controlling, and minimizing the hazards of construction-related wildlife attractants near airport traffic areas; and (2) minimizing the travel cost of construction resources and the cost of devices installed to control wildlife on airport construction sites, while complying with all relevant aviation safety constraints. The model is developed using a multiobjective genetic algorithm and an application example is analyzed to demonstrate the use of the model in optimizing airport construction site layouts and its unique capability of generating optimal trade-offs between wildlife control and site layout costs.  相似文献   

6.
The high variability of construction environments results in high construction-cost variation, especially in material costs. Inadequate planning may cause material shortages that delay the project schedule or, alternatively, a substantial increase in inventory costs by producing or supplying materials earlier than they are needed at the construction site. In order to solve these problems, this paper studies steel rebar production and supply operations and establishes an optimal model that minimizes the integrated inventory cost of the supply chain. Based on the optimal model, this paper develops a decision-support system to generate a production and supply plan for a supplier and buyers of steel rebar. After utilizing the decision-support system to create the supply and production plan, this paper analyzes the results to study the influence of transaction constraints on inventory cost. This paper also discusses cases of global optimization of the inventory cost for the entire supply chain and compares them with cases of local optimization for individual members.  相似文献   

7.
Layout of temporary facilities on a construction site is essential to enhancing productivity and safety, and is a complex issue due to the unique nature of construction. This paper proposes a particle swarm optimization (PSO)-based methodology to solve the construction site unequal-area facility layout problem. A priority-based particle representation of the candidate solutions to the layout problem is proposed. The particle-represented solution in terms of priorities should be transformed to the specific layout plan with consideration of nonoverlap and geometric constraints. In addition, a modified solution space boundary handling approach is proposed for controlling particle updating with regard to the priority value range. Computational experiments are carried out to justify the efficiency of the proposed method and investigate its underlying performances. This study aims at providing an alternative and effective means for solving the construction site unequal-area layout problem by utilizing the PSO algorithm.  相似文献   

8.
介绍了设备检修安装项目造价管理中现场工程量签证暴露的问题,进行了理论分析,并对其中的关键环节提出了改进措施,在有效缩减一定比例项目造价的同时,真实客观地反映设备检修安装工程造价。  相似文献   

9.
Dynamic site layout planning requires identifying and updating the positions of all temporary construction facilities such as offices, storage areas, and workshops over the entire project duration. Existing models do not guarantee global optimal solutions because they focus on optimizing the planning and layout of successive construction stages in a chronological order, without considering the future implications of layout decisions made in early stages. This paper presents the development of an approximate dynamic programming model that is capable of searching for and identifying global optimal dynamic site layout plans. The model applies the concepts of approximate dynamic programming to estimate the future effects of layout decisions in early stages on future decisions in later stages. The model is developed in three main phases: (1) formulating the decision variables, geometric constraints, and objective function of the dynamic site layout planning problem; (2) modeling the problem using approximate dynamic programming; and (3) implementing and evaluating the performance of the model. An evaluation example is analyzed to illustrate the use of the model and demonstrate its capabilities in generating global optimal solution for dynamic site layout planning of construction projects.  相似文献   

10.
Dynamic Layout Planning Using a Hybrid Incremental Solution Method   总被引:1,自引:0,他引:1  
Efficiently using site space to accommodate resources throughout the duration of a construction project is a critical problem. It is termed the “dynamic layout planning” problem. Solving it involves creating a sequence of layouts that span the entire project duration, given resources, the timing of their presence on site, their changing demand for space over time, constraints on their location, and costs for their relocation. A dynamic layout construction procedure is presented here. Construction resources, represented as rectangles, are subjected to two-dimensional geometric constraints on relative locations. The objective is to allow site space to all resources so that no spatial conflicts arise, while keeping distance-based adjacency and relocation costs minimal. The solution is constructed stepwise for consecutive time frames. For each resource, selected heuristically one at a time, constraint satisfaction is used to compute sets of feasible positions. Subsequently, a linear program is solved to find the optimal position for each resource so as to minimize all costs. The resulting sequence of layouts is suboptimal in terms of the stated global objective, but the algorithm helps the layout planner explore better alternative solutions.  相似文献   

11.
Airport expansion projects often require the presence of construction personnel, material, and equipment near airport secure areas/facilities, leading to an increase in the level of risk to airport security. Construction planners and airport operators need to carefully study this challenge and implement active measures in order to minimize construction-related security breaches and comply with all relevant Federal Aviation Administration guidelines. This paper presents the development of an advanced multiobjective optimization model for planning airport construction site layouts that is capable of minimizing construction-related security breaches while simultaneously minimizing site layout costs. The model incorporates newly developed criteria and performance metrics that enable evaluating and maximizing the construction-related security level in operating airports. The model is developed using a multiobjective genetic algorithm, and an application example is analyzed to demonstrate the use of the model and its unique capability of generating a wide spectrum of optimal trade-offs between construction-related airport security and site layout costs.  相似文献   

12.
13.
Efficient planning of materials procurement and storage on construction sites can lead to significant improvements in construction productivity and project profitability. Existing research studies focus on material procurement and storage layout as two separate planning tasks without considering their critical and mutual interdependencies. This paper presents the development of a new optimization model for construction logistics planning that is capable of simultaneously integrating and optimizing the critical planning decisions of material procurement and material storage on construction sites. The model utilizes genetic algorithms to minimize construction logistics costs that cover material ordering, financing, stock-out, and layout costs. The model incorporates newly developed algorithms to estimate the impact of potential material shortages on-site because of late delivery on project delays and stock-out costs. An application example is analyzed to demonstrate the capabilities of the construction logistics planning model in simultaneously optimizing material procurement decisions and storage layout plans.  相似文献   

14.
Contractor’s ability to procure cash to carry out construction operations represents a crucial factor to run profitable business. Bank overdrafts have always been the major source to finance construction projects. However, it is not uncommon that bankers set a limit on the credit allocated to an established overdraft. Bankers’ interest rates and consequently contractors’ financing costs are basically determined based on the allocated credit limits. Furthermore, project indirect costs are directly proportional to the project duration which is affected by the allocated credit limit. Thus, the credit limit affects project financing costs and indirect costs which in turn affect project profit. However, finance-based scheduling produces financially executable schedules at specified credit limits while maintaining the demand of time minimization. Thus, finance-based scheduling provides a tool to control the credit requirements. This control enables contractors to negotiate lower interest rates which reduce financing costs. Thus, finance-based scheduling enables contractors to reduce project indirect costs and financing costs. This paper utilizes genetic algorithm’s technique to devise finance-based schedules that maximize project profit through minimizing financing costs and indirect costs.  相似文献   

15.
This study is focused on developing an automated site layout system for construction materials. The system, MaterialPlan, including a geographic information system (GIS) based cost estimates system integrated with material layout planning, is a new tool to assist managers in identifying suitable areas to locate construction materials. As tabulation of all project quantities is calculated using GIS, linkages are established between the graphical features of detailed design and the related estimating quantities. Based on information regarding quantities and locations of the materials required in the project, this study identifies the suitable site to store the materials. Using the concept of “searching by elimination,” the system develops a heuristic approach, modeling the process of human decision making to generate potential sites for placing the materials. An objective function called the proximity index is developed to determine the optimal site. In conclusion, MaterialPlan demonstrates that GIS is a promising tool for solving construction layout problems and thus opens up a new way of thinking for the management of spatial information in construction planning and design.  相似文献   

16.
Time-cost trade-off analysis represents a challenging task because the activity duration and cost have uncertainty associated with them, which should be considered when performing schedule optimization. This study proposes a hybrid technique that combines genetic algorithms (GAs) with dynamic programming to solve construction projects time-cost trade-off problems under uncertainty. The technique is formulated to apply to project schedules with repetitive nonserial subprojects that are common in the construction industry such as multiunit housing projects and retail network development projects. A generalized mathematical model is derived to account for factors affecting cost and duration relationships at both the activity and project levels. First, a genetic algorithm is utilized to find optimum and near optimum solutions from the complicated hyperplane formed by the coding system. Then, a dynamic programming procedure is utilized to search the vicinity of each of the near optima found by the GA, and converges on the global optima. The entire optimization process is conducted using a custom developed computer code. The validation and implementation of the proposed techniques is done over three axes. Mathematical correctness is validated through function optimization of test functions with known optima. Applicability to scheduling problems is validated through optimization of a 14 activity miniproject found in the literature for results comparison. Finally implementation to a case study is done over a gas station development program to produce optimum schedules and corresponding trade-off curves. Results show that genetic algorithms can be integrated with dynamic programming techniques to provide an effective means of solving for optimal project schedules in an enhanced realistic approach.  相似文献   

17.
Airport expansion projects often require the presence and movement of construction labor and equipment near critical airport traffic areas. This close proximity between construction activities and airport operations needs to be carefully considered during the planning of construction site layouts in order to minimize and eliminate all potential construction-related hazards to aviation safety. This paper presents the development of a multiobjective optimization model for planning airport construction site layouts that is capable of minimizing construction-related hazards and minimizing site layout costs, simultaneously. The model incorporates newly developed optimization functions and metrics that enable: (1) maximizing the control of hazardous construction debris near airport traffic areas; (2) minimizing site layout costs including the travel cost of construction resources and the cost of debris control measures on airport sites; and (3) satisfying all operational safety constraints required by the federal aviation administration as well as other practical site layout constraints. The model is implemented using a multiobjective genetic algorithm and an application example is analyzed to demonstrate the use of the model and its capabilities in optimizing construction site layouts in airport expansion projects.  相似文献   

18.
Time–cost trade-off analysis is addressed as an important aspect of any construction project planning and control. Nonexistence of a unique solution makes the time–cost trade-off problems very difficult to tackle. As a combinatorial optimization problem one may apply heuristics or mathematical programming techniques to solve time–cost trade-off problems. In this paper, a new multicolony ant algorithm is developed and used to solve the time–cost multiobjective optimization problem. Pareto archiving together with innovative solution exchange strategy are introduced which are highly efficient in developing the Pareto front and set of nondominated solutions in a time–cost optimization problem. An 18-activity time–cost problem is used to evaluate the performance of the proposed algorithm. Results show that the proposed algorithm outperforms the well-known weighted method to develop the nondominated solutions in a combinatorial optimization problem. The paper is more relevant to researchers who are interested in developing new quantitative methods and/or algorithms for managing construction projects.  相似文献   

19.
In the transportation planning for some industrial wastes, in addition to hauling cost, environmental impact must frequently be considered. A notable example is transporting waste soil generated by major construction projects. Adequate transportation planning is particularly important for construction in a metropolitan area. In this study, we present a novel two-phase approach to address the multiple-criteria decision problem. The first phase applies the fuzzy analytic hierarchy process to obtain a “composite impedance” for each road sector where transportation costs, environmental impact, and traffic congestion are considered in the evaluation. The second phase employs fuzzy mathematical programming to find the optimal transportation network based on the fuzzy impedance. An illustrative example is provided for the transportation planning for waste soil of the Kaohsiung mass rapid transit system construction project. The optimal solutions using the proposed approach are compared with the solutions using the conventional shortest-path approach where minimizing the transportation cost is the only objective.  相似文献   

20.
Materials that are in the form of one-dimensional stocks such as steel rebars, structural steel sections, and dimensional lumber generate a major fraction of the generated construction waste. Cutting one-dimensional stocks to suit the construction project requirements result in trim or cutting losses, which is the major cause of the one-dimensional construction waste. The optimization problem of minimizing the trim losses is known as the cutting stock problem (CSP). In this paper, three approaches for solving the one-dimensional cutting stock problem are presented. A genetic algorithm (GA) model, a linear programming (LP) model, and an integer programming (IP) model were developed to solve the one-dimensional CSP. Three real life case studies from a steel workshop have been studied. The generated cutting schedules using the GA, LP, and IP approaches are presented and compared to the actual workshop’s cutting schedules. The comparison shows a high potential of savings that could be achieved using such techniques. Additionally, a user friendly Visual Basic computer program that utilizes genetic algorithms for solving the one-dimensional CSP is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号