首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The outermost bark layer of trees, predominantly Scots pine (Pinus sylvestris), was sampled at 82 non-urban locations from six arbitrarily designated areas (Northwest, Northeast, Central Highlands, Central and East, Central and Southwest, Southeast), throughout Scotland during 2002-2003 and analysed for lead concentration and stable lead isotopes by flame atomic absorption spectrometry (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The mean lead concentration and mean (206)Pb/(207)Pb ratio (+/-1 standard deviation, SD) for bark samples from the areas were as follows: Northwest (8.0 mg kg(-1), 1.121+/-0.014, n=17), Northeast (8.9 mg kg(-1), 1.117+/-0.012, n=12), Central Highlands (11.3 mg kg(-1), 1.130+/-0.010, n=11), Central and East (35.3 mg kg(-1), 1.120+/-0.007, n=10), Central and Southwest (20.6 mg kg(-1), 1.125+/-0.018, n=22) and Southeast (34.4 mg kg(-1), 1.120+/-0.005, n=10), with an overall mean lead concentration of 18.5 mg kg(-1) (range 0.6-146 mg kg(-1), median 8.4 mg kg(-1)) and an overall mean (206)Pb/(207)Pb ratio of 1.122+/-0.014 (range 1.089-1.168, median 1.122). The overall mean (206)Pb/(207)Pb ratio for bark was therefore significantly lower (p<0.01, t test) than the mean atmospheric (206)Pb/(207)Pb ratio of 1.154+/-0.006 (range 1.144-1.167, n=50) and 1.154+/-0.010 (range 1.134-1.171, n=26) as determined in rainwater collected routinely at Glensaugh, Central Highlands, during 2002 and 2003, respectively. The bark (206)Pb/(207)Pb values, 90% of which lay between 1.10 and 1.14, were more akin to those recorded for the atmosphere (via rainwater, atmospheric particulates, moss, etc.) at various locations throughout Scotland during the 1990s, a decade over which the use of leaded petrol (mean (206)Pb/(207)Pb ratio=1.076+/-0.011) declined markedly before its complete withdrawal in 2000. This strongly suggests that the lead content and isotopic composition of tree bark from Scots pine, which reputedly sheds its outer layers every couple of years or so, reflect exposure to atmospherically deposited lead (in the atmosphere or soil) over a much longer time period than just the previous 2-3 years of exposure to contemporary atmospheric lead. The possible influence of soil lead upon tree bark through external attachment was not observed in a comparative sub-set study of 27 paired bark (mean (206)Pb/(207)Pb ratio=1.122+/-0.016) and surface (0-2 cm) soil (mean (206)Pb/(207)Pb ratio=1.145+/-0.022) samples, in only six cases (i.e. 22%) of which did the corresponding (206)Pb/(207)Pb ratios agree within +/-2 SD. Likewise, bark (206)Pb/(207)Pb values exhibited no discernible trend with distance from the nearest road, with similar average values for 0-20 m (1.123+/-0.015, n=34) and 20-700 m (1.122+/-0.012, n=48), although the corresponding mean (and median) lead concentration of 23.5 (10) mg kg(-1) vs. 14.9 (7.5) mg kg(-1) was slightly higher for the former. The influence of airborne dusts from waste deposits related to former mining/smelting of Wanlockhead/Leadhills lead ores ((206)Pb/(207)Pb=1.170+/-0.003) could be seen, however, in the sycamore bark lead concentrations of up to 3050 mg kg(-1) and (206)Pb/(207)Pb ratios (1.168-1.171) observed at a distance of 0.5 km away.  相似文献   

2.
Total lead and its stable isotopes were analysed in sediment cores, leaves, stem and roots of Sacorconia fruticosa and Spartina maritima sampled from Tagus (contaminated site) and Guadiana (low anthropogenic pressure) salt marshes. Lead concentration in vegetated sediments from the Tagus marsh largely exceeded the levels in non-vegetated sediments. Depth profiles of (206)Pb/(207)Pb and (206)Pb/(208)Pb showed a decrease towards the surface ((206)Pb/(207)Pb=1.160-1.167) as a result of a higher proportion of pollutant Pb components. In contrast, sediments from Guadiana marsh exhibited low Pb concentrations and an uniform isotopic signature ((206)Pb/(207)Pb=1.172+/-0.003) with depth. This suggests a homogeneous mixing of mine-derived particles and pre-industrial sediments with minor inputs of anthropogenic Pb. Lead concentrations in roots of plants from the two marshes were higher than in leaves and stems, indicating limited transfer of Pb to aerial parts. A similar Pb isotopic signature was found in roots and in vegetated sediments, indicating that Pb uptake by plants reflects the input in sediments as determined by a significant anthropogenic contribution of Pb at Tagus and by mineralogical Pb phases at Guadiana. The accumulation in roots from Tagus marsh (max. 2870 microg g(-1) in S. fruticosa and max. 1755 microg g(-1) in S. maritima) clearly points to the dominant role of belowground biomass in the cycling of anthropogenic Pb. The fraction of anthropogenic Pb in belowground biomass was estimated based on the signature of anthropogenic Pb components in sediments ((206)Pb/(207)Pb=1.154). Since no differences exist between Pb signature in roots and upper sediments, the background and anthropogenic levels of Pb in roots were estimated. Interestingly, both background and anthropogenic Pb in roots exhibited a maximum at the same depth, although the proportion of anthropogenic Pb was relatively constant with depth (83+/-4% for S. fruticosa and 74+/-8% for S. maritima).  相似文献   

3.
Leg and foot bones of adult and juvenile red grouse (Lagopus lagopus scoticus) were collected from hunter-shot birds on two Scottish estates (Glendye and Invermark) and one Yorkshire estate in September, 2003. The lead content of bones was measured by atomic absorption spectrophotometry, and corresponding stable lead isotopes (Pb204, 206, 207, 208) by inductively coupled plasma mass spectrometry. At the Glendye (N = 111) and Invermark (N = 85) estates, relatively few birds (5.4% and 3.5%, respectively) had highly elevated bone lead concentrations (> 20 µg/g dry weight). In bones of these highly exposed birds, a combination of Pb206:Pb207 and Pb208:Pb207ratios was consistent with ingestion of lead gunshot available in Europe. By contrast, Yorkshire grouse experienced a high incidence (65.8%) of bone lead > 20 µg/g. The Pb206:Pb207 and Pb208:Pb207ratios in bones of these highly exposed birds were consistent with a combined exposure to ingested lead gunshot and lead from galena mining in the region. Lead isotope ratios also indicated that lead from UK gasoline combustion and fallout from atmospheric particles was not a likely source of elevated lead in bones of either Scottish or Yorkshire grouse. Suggested management options for the three moors include adopting nontoxic shot for all game shooting on the estates, allowing heather (Calluna vulgaris) vegetation to grow tall in lead shot fall-out zones to reduce physical access to high densities of lead shot already present, and provision of calcareous grit across moors to reduce lead assimilation from all ingested sources of lead.  相似文献   

4.
Although lead isotope ratios have been used to identify lead ammunition (lead shotshell pellets and bullets) as a source of exposure for First Nations people of Canada, the actual source of lead exposure needs to be further clarified. Whole blood samples for First Nations people of Ontario, Canada, were collected from participants prior to the traditional spring harvest of water birds, as well as post-harvest. Blood-lead levels and stable lead isotope ratios prior to, and after the harvest were determined by ICP-MS. Data were analyzed by paired t-tests and Wilcoxon Signed-Ranks tests. All participants consumed water birds harvested with lead shotshell during the period of study. For the group excluding six males who were potentially exposed to other sources of lead (as revealed through a questionnaire), paired t-tests and Wilcoxon Signed-Ranks tests showed consistent results: significant (p<0.05) increases in blood-lead concentrations and blood levels of (206)Pb/(204)Pb and (206)Pb/(207)Pb towards the mean values we previously reported for lead shotshell pellets; and a significant decrease in (208)Pb/(206)Pb values towards the mean for lead shotshell pellets. However, when we categorized the group further into a group that did not use firearms and did not eat any other traditional foods harvested with lead ammunition other than waterfowl, our predictions for (206)Pb/(204)Pb, (206)Pb/(207)Pb and (208)Pb/(206)Pb hold true, but there was not a significant increase in blood-lead level after the hunt. It appears that the activity of hunting (i.e., use of a shotgun) was also an important route of lead exposure. The banning of lead shotshell for all game hunting would eliminate a source of environmental lead for all people who use firearms and/or eat wild game.  相似文献   

5.
Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic.  相似文献   

6.
ICP-MS analysis of the bark pockets and annual rings of two beech (Fagus sylvatica L.) trees collected from Longshaw, Derbyshire and Swinton, South Yorkshire in the UK recorded differences in the (206)Pb/(207)Pb isotope ratio. In the Longshaw sample, the (206)Pb/(207)Pb isotope ratio of the bark pockets ( approximately 1914-1998, 78-260 microg g(-1) Pb) declined from approximately 1.16 to 1.12, whilst the annual rings (1899-1998, 0.2-2.5 microg g(-1) Pb) had a (206)Pb/(207)Pb ratio of approximately 1.18. In the Swinton sample, the bark pockets (approximately 1919-1998, 7-78 microg g(-1) Pb) declined from 1.15 to 1.11 and the annual rings (1899-1998, 0.2-0.5 microg g(-1) Pb) from 1.18 to 1.15. The data implied that the bark pockets accumulated lead directly from the atmosphere through wet and dry deposition, whilst the annual rings accumulated lead from the soil via the roots. The bark pockets recorded a relative decline in the accumulation of lead from indigenous sources, such as lead smelting and coal combustion (1.17-1.19), and increase in imported sources such as the smelting of Australian ores (1.04) and leaded petrol usage (1.06-1.09). In contrast, the annual rings at Longshaw recorded ratios typical of indigenous lead, whilst the annual rings in Swinton recorded a relatively small decrease in (206)Pb/(207)Pb reflecting leaded petrol usage. The decline in (206)Pb/(207)Pb of the bark pockets was consistent with the historical decline in (206)Pb/(207)Pb of atmospheric lead recorded in peat, lake sediments and archival herbage at other UK locations.  相似文献   

7.
The content and the isotopic composition of lead (Pb) were studied in a peat deposit on the ridge of the Brdy Hills, in the vicinity of the Príbram metallurgical works, in the Czech Republic. Quadrupole ICP MS was employed to determine the elemental composition and (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios. The individual layers were dated using alpha spectrometric measurement of the (210)Pb activity. The historical time period covered by the studied cores reached back to the 18th century. The Pb concentration in the studied profiles varied from 10 to 550 mg kg(-1). The (206)Pb/(207)Pb ratio varied in the range from 1.154 to 1.194 in the individual parts of the profile. The metallurgy of the Pb ores ((206)Pb/(207)Pb approximately 1.16), lithogenic Pb ((206)Pb/(207)Pb approximately 1.2), metallurgical processing of automobile batteries ((206)Pb/(207)Pb approximately 1.17) and the combustion of coal ((206)Pb/(207)Pb approximately 1.17-1.19) yield isotopic signatures that determine the isotope compositions of the individual profiles. Deposition rates between 15 mg m(-2) year(-1) at the beginning of the 19th century and 320 mg m(-2) year(-1) in the 1980s were determined in the dated profiles. The increased deposition rates determined on the dated profiles correspond to the increasing production of Pb ores in the Príbram mining area at the turn of the 19th and 20th centuries. The maximum for metallurgical production corresponds to the highest deposition rates recorded in 1960s and 1970s. The current deposition rate of 5-89 mg m(-2) year(-1) Pb is related to erosion of contaminated soils and waste dumps.  相似文献   

8.
The use of lead shotshell to hunt water birds has been associated with lead-contamination in game meat. However, evidence illustrating that lead shotshell is a source of lead exposure in subsistence hunting groups cannot be deemed definitive. This study seeks to determine whether lead shotshell constitutes a source of lead exposure using lead isotope ratios. We examined stable lead isotope ratios for lichens, lead shotshell and bullets, and blood from residents of Fort Albany and Kashechewan First Nations, and the City of Hamilton, Ontario, Canada. Data were analyzed using ANOVA and regression analyses. ANOVA of isotope ratios for blood revealed significant differences with respect to location, but not sex. Hamilton differed from both Kashechewan and Fort Albany; however, the First Nations did not differ from each other. ANOVA of the isotope ratios for lead ammunition and lichens revealed no significant differences between lichen groups (north and south) and for the lead ammunition sources (pellets and bullets). A plot of (206)Pb/(204)Pb and (206)Pb/(207)Pb values illustrated that lichens and lead ammunition were distinct groupings and only the 95% confidence ellipse of the First Nations group overlapped that of lead ammunition. In addition, partial correlations between blood-lead levels (adjusted for age) and isotope ratios revealed significant (p<0.05) positive correlations for (206)Pb/(204)Pb and (206)Pb/(207)Pb, and a significant negative correlation for (208)Pb/(206)Pb, as predicted if leaded ammunition were the source of lead exposure. In conclusion, lead ammunition was identified as a source of lead exposure for First Nations people; however, the isotope ratios for lead shotshell pellets and bullets were indistinguishable. Thus, lead-contaminated meat from game harvested with lead bullets may also be contributing to the lead body burden.  相似文献   

9.
The lead concentrations and isotopic ratios (206Pb/207Pb, 208Pb/206Pb, 208Pb/207Pb) of 31 rainwater (September 2006-December 2007) and 11 surface vegetation (moss, lichen, heather) samples (October 2007) from the rural upland catchment of Glensaugh in northeast Scotland and of nine bark samples (October 2007) from trees, predominantly Scots pine, in or near Glensaugh were determined. The mean 206Pb/207Pb ratios for rainwater in 2006 and 2007 were similar to those previously determined for 2000 to 2003 at Glensaugh, yielding an average mean annual value of 1.151 ± 0.005 (± 1 SD) for the period from 2000, when an outright ban on leaded petrol came into force in the UK, to 2007. The mean 206Pb/207Pb ratio (1.146 ± 0.004; n = 7) for surface vegetation near the top (430-450 m) of the catchment was not significantly different (Student's t test) from that of rainwater (1.148 ± 0.017; n = 24) collected over the 12-month period prior to vegetation sampling, but both were significantly different, at the 0.1% (i.e. p < 0.001) and 1% (p < 0.01) level, respectively, from the corresponding mean value (1.134 ± 0.006; n = 9) for the outermost layer of tree bark. When considered in conjunction with similar direct evidence for 2002 and indirect evidence (e.g. grass, atmospheric particulates, dated peat) for recent decades in the Glensaugh area, these findings confirm that the lead isotopic composition of surface vegetation, including that of suitably located moss, reflects that of the atmosphere while that of the outermost layer of Scots pine bark is affected by non-contemporaneous lead. The nature and relative extent of the different contributory sources of lead to the current UK atmosphere in the era of unleaded petrol, however, are presently not well characterised on the basis of lead isotopic measurements.  相似文献   

10.
Since 1989, a red kite Milvus milvus reintroduction programme has been underway in the United Kingdom, with 4-6 week old nestlings brought into captivity and held for 6-8 weeks before reintroduction. As scavengers, red kites may consume unretrieved game, and ingest shot or lead (Pb) fragments in their prey's flesh. We evaluated exposure to Pb in captive and wild red kites by taking blood samples from 125 captive young red kites prior to release, through analysing 264 pellets (regurgitated by wild birds) collected from under a roost site, and analysing Pb concentrations in livers and/or bones of 87 red kites found dead between 1995 and 2003. Lead isotope analyses of livers were also conducted in an effort to identify Pb exposure routes. Forty-six (36.8%) kites sampled prior to release had elevated blood Pb concentrations (201-3340 microg l(-1)). The source of this Pb was probably small fragments of lead ammunition in the carcasses of birds or mammals either fed to the nestlings by their parents or, more likely, subsequently whilst in captivity. Once released, kites were also exposed to lead shot in their food, and a minimum of 1.5-2.3% of regurgitated pellets contained Pb gunshot. Seven of 44 red kites found dead or that were captured sick and died within a few days had elevated (>6 mg kg(-1) dry weight [d.w.]) liver Pb concentrations, and six of these (14%) had concentrations of >15 mg kg(-1) d.w., compatible with fatal Pb poisoning. Post-mortem analyses indicated that two of these birds had died of other causes (poisoning by rodenticide and a banned agricultural pesticide); the remaining four (9%) probably died of Pb poisoning. Bone samples from 86 red kites showed a skewed distribution of Pb concentration, and 18 samples (21%) had Pb concentrations >20 mg kg(-1) d.w., indicating elevated exposure to Pb at some stage in the birds' life. Lead isotopic signatures (Pb (208/206); Pb (206/207)) in liver samples of the majority of kites were compatible with those found in lead shot extracted from regurgitated pellets. Lead isotope ratios found in the livers of kites with very low Pb concentrations were distinct from UK petrol Pb isotopic signatures, indicating that birds were exposed to little residual petrol Pb. We conclude that the primary source of Pb to which red kites are exposed is lead ammunition (shotgun pellets or rifle bullets), or fragments thereof, in their food sources; in some cases exposure appears sufficient to be fatal. We make recommendations to reduce Pb poisoning in both captive and wild red kites and other scavenging species.  相似文献   

11.
The human bioaccessibility of lead (Pb) in Pb-contaminated soils from the Glasgow area was determined by the Unified Bioaccessibility Research Group of Europe (BARGE) Method (UBM), an in vitro physiologically based extraction scheme that mimics the chemical environment of the human gastrointestinal system and contains both stomach and intestine compartments. For 27 soils ranging in total Pb concentration from 126 to 2160 mg kg− 1 (median 539 mg kg− 1), bioaccessibility as determined by the ‘stomach’ simulation (pH ~ 1.5) was 46-1580 mg kg− 1, equivalent to 23-77% (mean 52%) of soil total Pb concentration. The corresponding bioaccessibility data for the ‘stomach + intestine’ simulation (pH ~ 6.3) were 6-623 mg kg− 1 and 2-42% (mean 22%) of soil Pb concentration. The soil 206Pb/207Pb ratios ranged from 1.057 to 1.175. Three-isotope plots of 208Pb/206Pb against 206Pb/207Pb demonstrated that 206Pb/207Pb ratios were intermediate between values for source end-member extremes of imported Australian Pb ore (1.04) - used in the manufacture of alkyl Pb compounds (1.06-1.10) formerly added to petrol - and indigenous Pb ores/coal (1.17-1.19). The 206Pb/207Pb ratios of the UBM ‘stomach’ extracts were similar (< 0.01 difference) to those of the soil for 26 of the 27 samples (r = 0.993, p < 0.001) and lower in 24 of them. A slight preference for lower 206Pb/207Pb ratio was discernible in the UBM. However, the source of Pb appeared to be less important in determining the extent of UBM-bioaccessible Pb than the overall soil total Pb concentration and the soil phases with which the Pb was associated. The significant phases identified in a subset of samples were carbonates, manganese oxides, iron-aluminium oxyhydroxides and clays.  相似文献   

12.
The temporal evolution of atmospheric lead deposition and its possible sources were assessed in eastern Canada and in western Scotland, using blanket peat bogs as geochemical archives. Short cores were taken from two remote sites located close to the sea. Significant lead enrichments in the upper layers at both sites reflect the increasing emission of lead into the atmosphere due to anthropogenic activities during the last century. At the Scottish site, a region under aeolian influence from Europe, anthropogenic derived lead could be recognized by the distinctive unradiogenic composition (206Pb/207Pb ratios down to approximately 1.115), being clearly different from the pre-industrial values (206Pb/207Pb approximately 1.166). In contrast, the lead pollution in eastern Canada (influenced by North American sources) is identified by a more radiogenic lead isotope composition (206Pb/207Pb ratios up to approximately 1.199) compared to preindustrial values (206Pb/207Pb approximately 1.161). Emission inventories and isotope characteristics suggest that industrial (coal burning, mining) and traffic (leaded gasoline) outputs are the most likely sources during the first and the second half of the 20th century, respectively, in both, western Scotland and eastern Canada alike. The Scottish record is in line with previous studies of past atmospheric lead deposition. However, the Canadian deposit suggests that the wind derived, pre-industrial lead, is less radiogenic as previously implied using sediment archives. These results are thus the first to report pre-industrial lead isotope ratios and concentrations of atmospheric derived aerosols in North America.  相似文献   

13.
Long-range transport of air pollution from continental Asia is currently an important issue concerning the Japanese environment, especially in regions susceptible to acidification due to low buffering capacity, such as Murakami, Niigata prefecture, located on the west coast of central Japan. Evidence for long-range transport was obtained through lead and lead isotopic analysis of 84 archived precipitation filters, showing seasonal changes in lead deposition from May 1999 to May 2002. Lead deposition was highest in winter and spring (November through May) each year and lowest in summer. Computed 72-h back trajectories showed that in winter air masses were predominantly transported from the northwest, passing over northern China and eastern Russia, whilst in summer air masses predominantly originated from the southeast passing over Japan. Lead isotopic analysis showed higher (208)Pb/(206)Pb during winter, indicating that lead originated from a different source. A plot of (207)Pb/(206)Pb vs. (208)Pb/(206)Pb identified a thorogenic component, which is excess (208)Pb compared to a standard lead growth curve, indicative of certain lead ores and coals in continental Asia. The data provided evidence of long-range transport of lead from continental Asia to Japan. Bark pockets included within the trunks of two Japanese cedar trees harvested near Murakami, dating between 1972 and 1982, exhibited lead isotope ratios indicative of Japanese-sourced lead. In contrast, current (2003) bark showed thorogenic ratios, consistent with a relative decline in Japanese-sourced and increase in continental-sourced lead.  相似文献   

14.
Pb contamination and isotopic composition of urban soils in Hong Kong   总被引:10,自引:0,他引:10  
In the urban environment, intense human activities can lead to degradation of environmental quality and have potential long-term effects on human health. In the present study, Pb contamination of urban soil cores in Hong Kong was investigated using a combination of the 'total' concentration, chemical partitioning and isotopic composition of Pb in the soils. The analytical results showed that urban soil cores in close vicinity to high traffic volumes (> 40000 vehicles per day) were usually contaminated with Pb, suggesting atmospheric deposition of Pb as a consequence of vehicular emissions arising from the combustion of leaded gasoline in the past. Increasing Pb concentrations were generally associated with decreasing 206Pb/207Pb ratios of the contaminated soil cores, offering strong evidence of accumulation of Pb derived from anthropogenic sources. In selected contaminated soil cores, the 206Pb/207Pb ratios tended to increase in the order: carbonate < exchangeable < Fe-Mn oxide < organic < residual fractions. The distribution of the 206Pb/207Pb ratios in the five operationally defined chemical fractions showed that the 206Pb/207Pb ratios generally increased with increasing stability, demonstrating preferential association of anthropogenic Pb with the carbonate, exchangeable, Fe-Mn oxide and organic fractions in the soils.  相似文献   

15.
High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield (208Pb/206Pb, 207Pb/206Pb ratios range from 2.0744-2.0954 and 0.8413-0.8554 respectively). In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in the upper catchment (208Pb/206Pb, 207Pb/206Pb ratios range from 2.0856-2.1397 and 0.8554-0.8896 respectively) and far exceed values determined for the geogenic regional background. Here, the pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived from the combustion of coal, although present, is masked by the other two sources. Recent sediments from the main channel of the River Wear are isotopically indistinguishable from older, low order stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope variation and sediment lead concentrations, estimates can be made of the discharges from discrete mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing information pertinent to source apportionment and on-going catchment remediation measures, the database is a valuable resource for epidemiologists concerned with the health risks posed by environmental lead.  相似文献   

16.
Childhood uptake of lead from exposure to atmospheric leaded gasoline in the United States has been studied using mainly blood lead levels. Since reliable blood lead techniques were used only after the peak use of leaded gasoline, the prior exposure history is unclear. The well-documented decline in blood lead levels after the mid-1970s could represent the continuation of a historic steady decline in exposure from many sources. Alternatively, the post-1970s decline might represent the declining phase of a unimodal rise and fall corresponding closely to usage of leaded gasoline. To assess these possibilities, lead concentration and 207Pb/206Pb isotope ratios were measured in the enamel of permanent molar teeth formed between 1936 and 1993 in mainly African-American donors who grew up in the Cleveland area. Tooth enamel preserves the lead concentration and isotope ratio that prevails during tooth formation. Historical trends in enamel lead concentration were significantly correlated with surrogates of atmospheric lead exposure: lead in sediments of two dated Lake Erie cores, and lead consumed in gasoline. About two-thirds of the total lead uptake into enamel in this period was attributable to leaded gasoline, and the remainder to other sources (e.g. paint). Enamel 207Pb/206Pb isotope ratios were similar to those of one lake sediment. Multivariate analysis revealed significant correlation in neighborhoods with higher levels of traffic, and including lake sediment data, accounted for 53% of the variation in enamel lead levels. Enamel lead concentration was highly correlated with reported African-American childhood blood levels. The extrapolated peak level of 48 μg/dL (range 40 to 63) is associated with clinical and behavioral impairments, which may have implications for adults who were children during the peak gasoline lead exposure. In sum, leaded gasoline emission was the predominant source of lead exposure of African-American Cleveland children during the latter two-thirds of the 20th century.  相似文献   

17.
The validity of the use of sycamore (Acer pseudoplatanus) tree-rings for the reconstruction of atmospheric lead pollution histories was investigated. Tree cores spanning 1892-2003 were collected from several sycamores from the eastern shore of Loch Lomond, Scotland, an area with no local point sources of lead emission. The lead concentration and 206Pb/207Pb profiles of the Loch Lomond region cores were compared with corresponding data for the 210Pb-dated loch sediment, and also with data for moss of known age from a Scottish herbarium collection. Two of the seven sycamore cores showed the same lead concentration trend as the lead flux to the loch, the rest having no similarity to either each other or the loch sediment record. Two further sycamore cores showed some similarity in their temporal 206Pb/207Pb trends to those seen in the sediment and moss records, but only in part of their profiles, whilst the 206Pb/207Pb ratios of the other sycamore cores remained relatively unchanged for the majority of the time covered, or exhibited an opposite trend. The 206Pb/207Pb ratios of the tree cores were also mostly higher than those of the previously established records for any given time period. Tree cores covering 1878-2002 were also collected along transects from Wanlockhead and Tyndrum, two areas of former lead mining and smelting associated with distinct 206Pb/207Pb ratios of 1.170 and 1.144, respectively. The Wanlockhead tree cores exhibited a generally decreasing trend in lead concentration with both time and distance from the lead mine. The characteristic 206Pb/207Pb ratio of 1.170 was observed in samples close to the mine but a decrease in the influence of the mine-derived lead was observed in more distant samples. The tree sampled at Tyndrum showed elevated lead concentrations, which decreased with time, and a fairly constant 206Pb/207Pb ratio of 1.15 reflecting input from the mine, features not observed in any other trees along the transect. Overall the data suggest that sycamore tree-ring analysis is an unsuitable method for obtaining records of historical lead deposition in areas with no large local lead input, although it can reveal some information about the temporal and spatial influence of point source emitters. The unsuitability probably arises from the number of active annual rings in a single year, the post-uptake radial translocation of elements, the relative importance of the different routes of uptake, and the soil depth(s) from which trees draw nutrients.  相似文献   

18.
To investigate the capability of the lead isotope signature technique to support a source apportionment study at a Continental scale, atmospheric particulate matter was collected at Cap Gris-Nez (Eastern Channel, northern France), over one year (1995-1996). Four days retrospective trajectories of air masses were available during each sampling experiment. Twenty-eight samples, for which the origin of aerosols was unambiguously determined, were selected for isotopic measurements. Considering the Enrichment Factors, EF(Crust) of lead and its size distribution, we show that lead is mostly from anthropogenic origin and mainly associated with [0.4 < diameter < 0.9 microm] particles. The extent to which various Continental sources influence the lead abundance in aerosols is exhibited by considering both the lead concentration and the origin of air masses. Lead concentration is higher by a factor of approximately seven, when air masses are derived from Continental Europe, by comparison with marine air masses. Taking into account these concentrations and the vertical movements of air masses, we compare the different isotopic compositions using a statistical non-parametric test (Kolmogorov-Smirnov). We produce evidence that, for most of the cases, air masses originating from Continental Europe exhibit a more radiogenic composition (1.134 < 206Pb/207Pb < 1.172) than air masses coming from the United Kingdom (1.106 < 206Pb/207Pb < 1.124). Generally, lead isotopic compositions in aerosols are clearly distinct from the gasoline signatures in European countries, strongly suggesting that automotive lead is no longer the major component of this metal in the air. Gasoline and industrial isotopic signatures could explain the origin of lead in our aerosol samples. A source apportionment based upon 206Pb/207Pb ratios, suggests that the difference between British (206Pb/207Pb = 1.122 +/- 0.038) and Continental (206Pb/207Pb = 1.155 +/- 0.022) signatures may be largely explained by differences in the petrol lead content of aerosols (23-62% in Great Britain vs. 10-36% in Continental Europe).  相似文献   

19.
The isotopic composition of lead was determined in samples collected between 1966 and 1987, mainly from the Helsinki area, in emission sources (gasoline, incinerator and lead smelter emissions, coal), air, in samples representing long-term deposition (lichen, soil, lake sediments), and in human tissue. Isotope ratios were determined by thermal ionization mass spectrometry after chemical separation of lead by anion exchange and cathodic electrodeposition. The origin of lead in man and the environment in the Helsinki area was evaluated by using the differences in the measured isotope ratios as an indicator. The mean of the ratio in gasoline (206Pb/207Pb 1.124 +/- 0.026) and the ratios in other emission sources in Helsinki (1.149-1.226) were significantly different. However, the wide range of isotope ratios in gasoline (1.063-1.173) reduced the accuracy when assessing the contribution of the different sources. Lead in air samples from Helsinki (1.123 +/- 0.013) could be attributed to gasoline, as could lead in soil near a highway (1.136 +/- 0.003). By contrast, isotope ratios measured in lichen (1.148 +/- 0.006) indicated considerable amounts of lead from sources with higher 206Pb abundances, evidently industrial sources. The isotope ratios in human liver, lung, and bone from individuals dying between 1976-79 (206Pb/207Pb ratio 1.142 +/- 0.015, 1.151 +/- 0.011, and 1.156 +/- 0.013, respectively) reflect the large lead emissions from the incinerators and lead smelters in the Helsinki area in the 1960s and 1970s. In lake sediment cores a correlation was found between the isotope ratios, lead concentration, and depth. The nonanthropogenic lead of high isotope ratios from bedrock was the major component at depths dated older than 100 years. At the surface of the sediment atmospheric lead prevailed, with ratios similar to those of gasoline, air samples and lichen. In the post-1900 layers, anthropogenic lead made up about 40-95% of the total sedimentary lead.  相似文献   

20.
We assess the capability of lead isotopes to study the transport of pollution aerosols above the Straits of Dover by collecting atmospheric aerosols above the Eastern Channel and the Southern Bight of the North Sea. During the same period, we characterized the lead isotopic signature of the main industrial sources on the French coast near the Straits of Dover. Urban and automobile-derived aerosols were also collected. Due to the phasing out of lead in gasoline, the urban isotopic composition (206Pb/207Pb = 1.158 +/- 0.003) has become more radiogenic, although it is highly variable. On a regional scale, major industrial emissions have a well-defined isotopic composition (1.13 < 206Pb/207Pb < 1.22), more radiogenic than the petrol-lead signature (1.06 < 206Pb/207Pb < 1.12). These results together with those measured near the main coastal highway show that the automobile source has become a minor component of particulate lead in air. On a local scale, Dunkerque, the most urbanized and industrialized area along the Straits of Dover, may transiently control elevated lead concentrations. Except for the occurrence of local and regional range transport episodes, lead concentrations in the Straits of Dover can be related to remote or semi-remote pollution source emissions. Combining air mass retrospective trajectories and related lead abundances and isotopic compositions, it can be shown that lead aerosols originating from eastern Europe have an isotopic signature (1.145 < 206Pb/207Pb < 1.169) different from the isotopic composition of west-European lead aerosols (1.111 < 206Pb/207Pb < 1.142). The influence of remote North American sources is suggested, with caution, due to uncertainties in meteorological calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号