首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This article addresses an important current development in medical and biological imaging: the possibility of imaging soft tissue at resolutions in the micron range using hard X‐rays. Challenging environments, including the cochlea, require the imaging of soft tissue structure surrounded by bone. We demonstrate that cochlear soft tissue structures can be imaged with hard X‐ray phase contrast. Furthermore, we show that only a thin slice of the tissue is required to introduce a large phase shift. It is likely that the phase contrast image of the soft tissue structures is sufficient to image the structures even if surrounded by bone. For the present set of experiments, structures with low‐absorption contrast have been visualized using in‐line phase contrast imaging and a grating interferometer. The experiments have been performed at the Advanced Photon Source at Argonne National Laboratories, a third generation source of synchrotron radiation. The source provides highly coherent X‐ray radiation with high‐photon flux (>1012 photons/s) at high‐photon energies (5–70 keV). Radiographic and light microscopy images of the gerbil cochlear slice samples were compared. It has been determined that a 20‐μm thick tissue slice induces a phase shift between 1/3π and 2/3π. Microsc. Res. Tech., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Non‐invasive imaging techniques like X‐ray computed tomography have become very popular in zoology, as they allow for simultaneous imaging of the internal and external morphology of organisms. Nevertheless, the effect of different staining approaches required for this method on samples lacking mineralized tissues, such as soft‐bodied invertebrates, remains understudied. Herein, we used synchrotron radiation‐based X‐ray micro‐computed tomography to compare the effects of commonly used contrasting approaches on onychophorans – soft‐bodied invertebrates important for studying animal evolution. Representatives of Euperipatoides rowelli were stained with osmium tetroxide (vapour or solution), ruthenium red, phosphotungstic acid, or iodine. Unstained specimens were imaged using both standard attenuation‐based and differential phase‐contrast setups to simulate analyses with museum material. Our comparative qualitative analyses of several tissue types demonstrate that osmium tetroxide provides the best overall tissue contrast in onychophorans, whereas the remaining staining agents rather favour the visualisation of specific tissues and/or structures. Quantitative analyses using signal‐to‐noise ratio measurements show that the level of image noise may vary according to the staining agent and scanning medium selected. Furthermore, box‐and‐whisker plots revealed substantial overlap in grey values among structures in all datasets, suggesting that a combination of semiautomatic and manual segmentation of structures is required for comprehensive 3D reconstructions of Onychophora, irrespective of the approach selected. Our results show that X‐ray micro‐computed tomography is a promising technique for studying onychophorans and, despite the benefits and disadvantages of different staining agents for specific tissues/structures, this method retrieves informative data that may eventually help address evolutionary questions long associated with Onychophora.  相似文献   

3.
The retina is one of the most tiny and sophisticated tissues of the body. Three dimensional (3D) visualization of the whole retina is valuable both in clinical and research arenas. The tissue has been predominantly assessed by time‐consuming histopathology and optical coherence tomography (OCT) in research and clinical arenas. However, none of the two methods can provide 3D imaging of the retina. The purpose of this study is to give a volumetric visualization of rat retina at submicron resolution, using an emerging imaging technique‐phase‐contrast X‐ray CT. A Sprague‐Dawley (SD) rat eye specimen was scanned with X‐ray differential phase contrast tomographic microscopy (DPC‐microCT) equipped at the Swiss Light Source synchrotron. After scanning, the specimen was subjected to routine histology procedures and severed as a reference. The morphological characteristics and signal features of the retina in the DPC‐microCT images were evaluated. The total retina and its sublayers thicknesses were measured on the DPC‐microCT images and compared with those obtained from the histological sections. The retina structures revealed by DPC‐microCT were highly consistent with the histological section. In this study, we achieved nondestructive 3D visualization of SD rat retina. In addition to detailed anatomical structures, the objective parameters provided by DPC‐microCT make it a useful tool for retinal research and disease diagnosis in the early stage.  相似文献   

4.
Iodine imparts strong contrast to objects imaged with electrons and X‐rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation‐deposition state‐change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas‐tight container along with a small mass of solid I2. The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin‐embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X‐ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron‐ and photon‐sample interactions, such as transmission electron microscopy and light microscopy. Microsc. Res. Tech. 77:1044–1051, 2014. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc.  相似文献   

5.
Soft X‐ray microscopy has excellent characteristics for imaging cells and subcellular structures. In this paper, the yeast strain, Candida utilis, was imaged by soft X‐ray microscopy and three‐dimensional volumes were reconstructed with the SART‐TV method. We performed segmentation on the reconstruction in three dimensions and identified several types of subcellular architecture within the specimen cells based on their linear absorption coefficient (LAC) values. Organelles can be identified by the correlation between the soft X‐ray LAC values and the subcellular architectures. Quantitative analyses of the volume ratio of organelles to whole cell in different phases were also carried out according to the three‐dimensional datasets. With such excellent features, soft X‐ray imaging has a great influence in the field of biological cellular and subcellular research.  相似文献   

6.
The soft X‐ray microscope at the Lawrence Berkeley National Laboratory was developed for visualization of biological tissue. Soft X‐ray microscopy provides high‐resolution visualization of hydrated, non‐embedded and non‐sectioned cells and is thus potentially an alternative to transmission electron microscopy. Here we show for the first time soft X‐ray micrographs of structures isolated from the guinea‐pig inner ear. Sensory outer hair cells and supporting pillar cells are readily visualized. In the hair cells, individual stereocilia can easily be identified within the apical hair bundle. The underlying cuticular plate is, however, too densely composed or too thick to be clearly visualized, and thus appears very dark. The cytoplasmic structures protruding from the cuticular plates as well as the fibrillar material surrounding and projecting from the cell nuclei can be seen. In the pillar cells the images reveal individual microtubule bundles. Soft X‐ray images of the acellular tectorial membrane and thin two‐layered Reissner's membrane display a level of resolution comparable to low‐power electron microscopy.  相似文献   

7.
X‐ray computed tomography is a strong tool that finds many applications both in medical applications and in the investigation of biological and nonbiological samples. In the clinics, X‐ray tomography is widely used for diagnostic purposes whose three‐dimensional imaging in high resolution helps physicians to obtain detailed image of investigated regions. Researchers in biological sciences and engineering use X‐ray tomography because it is a nondestructive method to assess the structure of their samples. In both medical and biological applications, visualization of soft tissues and structures requires special treatment, in which special contrast agents are used. In this detailed report, molecule‐based and nanoparticle‐based contrast agents used in biological applications to enhance the image quality were compiled and reported. Special contrast agent applications and protocols to enhance the contrast for the biological applications and works to develop nanoparticle contrast agents to enhance the contrast for targeted drug delivery and general imaging applications were also assessed and listed.  相似文献   

8.
In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single‐shot soft X‐ray contact microscopy is presented. High resolved X‐ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X‐ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid‐state X‐ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X‐ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X‐ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high‐quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.  相似文献   

9.
Nanometric molybdenum disulphide particles of about 30 nm diameter have been prepared by the hydrodesulphurisation of molybdenum trisulphide obtained from acidifying a mixed solution of Na2MoO4 and Na2S at ambient temperature using a quick homogeneous precipitation method (QHPM). Using X‐ray diffraction and transmission electron microscopy (TEM), the size and crystallisation of the nano‐MoS2 obtained by hydrodesulphurisation at different temperatures have been investigated. In addition, the tribological performance of nano‐MoS2 has been investigated by means of a block‐on‐ring tribometer, X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results show that base oils with nanometric MoS2 as an additive provide higher wear resistance than other oils containing commercially available common MoS2. However, the friction reduction is not obviously improved. SEM characterisation reveals a worn, smooth surface when using the nano‐MoS2 additive, and XPS analysis indicates a greater amount of molybdenum oxide and iron sulphide in the antiwear thin film formed on the rubbed surface.  相似文献   

10.
High‐resolution imaging of middle‐ear geometry is necessary for finite‐element modeling. Although micro‐computed tomography (microCT) is widely used because of its ability to image bony structures of the middle ear, it is difficult to visualize soft tissues – including the tympanic membrane and the suspensory ligaments/tendons – because of lack of contrast. The objective of this research is to quantitatively evaluate the efficacy of iodine potassium iodide (IKI) solution as a contrast agent. Six human temporal bones were used in this experiment, which were obtained in right‐left pairs, from three cadaveric heads. All bones were fixed using formaldehyde. Three bones (one from each pair) were stained in IKI solution for 2 days, whereas the other three were not stained. Samples were scanned using a microCT system at a resolution of 20 μm. Eight soft tissues in the middle ear were segmented: anterior mallear ligament, incudomallear joint, lateral mallear ligament, posterior incudal ligament, stapedial annular ligament, stapedius muscle, tympanic membrane and tensor tympani muscle. Contrast‐to‐noise ratios (CNRs) of each soft tissue were calculated for each temporal bone. Combined CNRs of the soft tissues in unstained samples were 6.1 ± 3.0, whereas they were 8.1 ± 2.7 in stained samples. Results from Welch's t‐test indicate significant difference between the two groups at a 95% confidence interval. Results for paired t‐tests for each of the individual soft tissues also indicated significant improvement of contrast in all tissues after staining. Relatively large soft tissues in the middle ear such as the tympanic membrane and the tensor tympani muscle were impacted by staining more than smaller tissues such as the stapedial annular ligament. The increase in contrast with IKI solution confirms its potential application in automatic segmentation of the middle‐ear soft tissues.  相似文献   

11.
In this study, we compare two evolving techniques for obtaining high‐resolution 3D anatomical data of a mouse specimen. On the one hand, we investigate cryotome‐based planar epi‐illumination imaging (cryo‐imaging). On the other hand, we examine X‐ray phase‐contrast micro‐computed tomography (micro‐CT) using synchrotron radiation. Cryo‐imaging is a technique in which an electron multiplying charge coupled camera takes images of a cryo‐frozen specimen during the sectioning process. Subsequent image alignment and virtual stacking result in volumetric data. X‐ray phase‐contrast imaging is based on the minute refraction of X‐rays inside the specimen and features higher soft‐tissue contrast than conventional, attenuation‐based micro‐CT. To explore the potential of both techniques for studying whole mouse disease models, one mouse specimen was imaged using both techniques. Obtained data are compared visually and quantitatively, specifically with regard to the visibility of fine anatomical details. Internal structure of the mouse specimen is visible in great detail with both techniques and the study shows in particular that soft‐tissue contrast is strongly enhanced in the X‐ray phase images compared to the attenuation‐based images. This identifies phase‐contrast micro‐CT as a powerful tool for the study of small animal disease models.  相似文献   

12.
There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X‐ray absorption properties, soft X‐ray scanning transmission X‐ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal‐containing nanomaterials (Ti, Ni, Cu) and carbon‐based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X‐ray fluorescence detection in soft X‐ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm.  相似文献   

13.
Crystalline glazes on ceramic plates produced commercially in the U.K. and on ceramic pots produced commercially in Taiwan and Spain have been examined by X‐ray diffraction, conventional and polarized light microscopy, and scanning electron microscopy in order to identify the crystalline phases present in the glazes and to ascertain through X‐ray microanalysis the partitioning behaviour of the transition metal ions used to colour the glazes and the crystals within them. In each case examined, the macroscopic two‐dimensional spherulites within the glazes clearly seen by the naked eye were found to consist of large numbers of radially orientated acicular crystals each 5 µm or less in width embedded within the silica‐rich glaze. Energy dispersive X‐ray microanalysis and X‐ray diffraction of these crystals identified these crystals as willemite, α‐Zn2SiO4. The strong [001] texture of these crystals within the glaze evident from the X‐ray diffraction patterns was consistent with polarized light microscopy observations of the willemite crystals. In addition to willemite, small iron‐doped gahnite (ZnAl2O4) crystals were found in a honey‐coloured crystalline glaze and acicular rutile (TiO2) crystals were found in the Portmeirion Pottery plates examined. Transition metal ions with a preference for tetrahedral coordination were observed to substitute for Zn2+ ions in willemite and to partition preferentially to the willemite crystals, whereas ions preferring octahedral coordination preferred to remain in the glaze.  相似文献   

14.
The effect of the substitution of Fe by Co on the enhancement of glass‐forming ability limits and subsequent nanocrystallization was studied in a rapidly quenched amorphous system (FexCoy)79Mo8Cu1B12 for y/x ranging from 0 to 1. The effect of Cu on nanocrystallization was investigated by comparison with Cu‐free amorphous Fe80Mo8B12. Systems partially crystallized at the surface layer were prepared for y/x = 0 using different quenching conditions. The effect of heat treatment of master alloys used for ribbon casting was also assessed. The microstructure and surface/bulk crystallization effects were analysed using transmission electron microscopy and electron and X‐ray diffraction in relation to the expected enhancement of high‐temperature soft magnetic properties, drastically reduced grain sizes (~5 nm) and Co content. Unusual surface phenomena were observed, indicating the origin of possible nucleation sites for preferential crystallization in samples with low Co content.  相似文献   

15.
In view of the increasing awareness of the need for environmental protection, it is considered important to have more low‐ or non‐phosphorus additives in engine oils. To this end, molybdenum polyisobutenyl succinate (MoPIBS) was synthesised and its structure investigated using spectroscopy. The antiwear and friction‐reducing behaviour of MoPIBS as an oil additive was investigated and compared to that of zinc dialkyldithio‐phosphate (ZnDDP) using a four‐ball tester. The results indicated that MoPIBS in white oil exhibits very good antiwear and friction‐reducing properties, better than those of ZnDDP, but that the load‐carrying capacity is poorer than that of ZnDDP. The worn surfaces were investigated using Auger electron spectroscopy (AES) and X‐ray photoelectron spectroscopy (XPS). It was found that the boundary lubrication film on the worn surfaces was mainly composed of MoO3 and Fe2O3, which contributed to improving the tribological properties of MoPIBS as an additive in white oil.  相似文献   

16.
Solid state interface reactions in highly dispersed Lu2O3– SiO2 binary oxide system were studied at 600–1100 °C with X‐ray powder diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM) and Fourier Transform Infrared spectroscopy (FTIR). The results show that at 600–900 °C an amorphous, nanometer thick Lu‐O‐Si layer covering SiO2 particles exists in the system. At higher temperatures the breakage of the layer into amorphous islands occurs and crystalline silicates with various structures are formed. In particular, Lu4[Si3O10][SiO4] silicate, analogue of B‐type Dy – Tm disilicates, forms at 1000 °C.  相似文献   

17.
X-ray high-resolution vascular network imaging   总被引:3,自引:1,他引:3  
This paper presents the first application of high‐resolution X‐ray synchrotron tomography to the imaging of large microvascular networks in biological tissue samples. This technique offers the opportunity of analysing the full three‐dimensional vascular network from the micrometre to the millimetre scale. This paper presents the specific sample preparation method and the X‐ray imaging procedure. Either barium or iron was injected as contrast agent in the vascular network. The impact of the composition and concentration of the injected solution on the X‐ray synchrotron tomography images has been studied. Two imaging modes, attenuation and phase contrast, are compared. Synchrotron high‐resolution computed tomography offers new prospects in the three‐dimensional imaging of in situ biological vascular networks.  相似文献   

18.
Bone is a highly vascular tissue, which plays an important role in bone development and healing. The ability to analyze both the bone and vasculature simultaneously can enhance the understanding of wound healing, development, and disease in bone. At present, analysis methods are limited in their ability to allow for this simultaneous analysis of bone and bone vasculature in three dimensions, without using the most recent dual‐energy computed tomography (CT) techniques. In this study, we present a new barium sulfate (BaSO4) radiopaque vascular perfusion compound for performing postmortem microangiography with single‐beam microcomputed tomography (microCT), which allows for such simultaneous analysis. This compound differs from currently available contrast mediums due to (1) the high weight‐to‐volume ratio of BaSO4 achieved, (2) small BaSO4 aggregate size (<5 μm), (3) minimal additives, and (4) its miscibility with blood and saline. Most notably, it achieves a radiodensity of 2.4× that of cortical bone, with high perfusion of both the arterial and venous systems and the intervening capillary bed, resulting in an in vivo radiodensity that ranges from that of bone to titanium. Our results, verified using a rat femoral gap‐healing model, show that the compound is uniquely suited to high‐contrast imaging of the vasculature in the presence of undecalcified bone, with a versatility to be used in other tissues. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Abstract

The copper(II)–L‐histidine system plays a pivotal role in copper transport across cell membranes. The coordination mode of copper(II)–L‐histidine species at physiological pH has been elusive in aqueous solution for the last four decades, despite exhaustive characterization studies. Recently, the isolation and the X‐ray crystal structure of the physiological [Cu(His)2] complex have been reported. The X‐ray structure is different from all the structures suspected for this complex in solution.

We carried out a polarographic analysis to identify copper(II)–L‐histidine species at physiological pH. In our experimental conditions, three copper(II)–L‐histidine species coexist around the physiological pH. These novel considerations can explain the controversy encountered in the investigation of the coordination mode in aqueous solution.  相似文献   

20.
CeO2 thin films doped with neodymium oxides for application to gas sensors have been elaborated by the pulsed laser deposition technique. The films were deposited on orientated Si (100) substrates with variable deposition times (t = 90, 180 and 360 s) and molar fractions of Nd2O3 (0, 6.5, 15, 21.5 and 27 at.%). The resulting Nd–CeO2 thin films were characterized by means of X‐ray diffraction analysis, scanning electron microscopy and transmission electron microscopy equipped with EDS (Energy Dispersive Spectrometer) microanalysis. From X‐ray diffraction analyses, it is clearly established that the texture is modified by Nd additions. The preferred (111) orientations of the CeO2 crystals change into the (200) orientation. The morphology of the CeO2 grains changes from triangles, for pure CeO2 thin films, to spherical grains for Nd‐doped films. In addition, cell parameter analyses from X‐ray diffraction data show that a partial chemical substitution of Ce by Nd should occur in the face‐centred cubic lattice of ceria: this should give rise to Ce1‐xNdxO2?z phases with oxygen non‐stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号