首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of CuO amount (0.5–3.0 mol%), sintering temperature (900°C–1000°C), and sintering time (2–6 h) on the low‐temperature sintering behavior of CuO‐added Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT22) ceramics. Normalized strain (Smax/Emax), piezoelectric coefficient (d33), and remanent polarization (Pr) of 1.0 mol% CuO‐added BNKT22 ceramics sintered at 950°C for 4 h was 280 pm/V, 180 pC/N, and 28 μC/cm2, respectively. These values are similar to those of pure BNKT22 ceramics sintered at 1150°C. In addition, we investigated the performance of multilayer ceramic actuators made from CuO‐added BNKT22 in acoustic sound speaker devices. A prototype sound speaker device showed similar output sound pressure levels as a Pb(Zr,Ti)O3‐based device in the frequency range 0.66–20 kHz. This result highlights the feasibility of using low‐cost multilayer ceramic devices made of lead‐free BNKT‐based piezoelectric materials in sound speaker devices.  相似文献   

2.
A new lead‐free BNT‐based piezoelectric ceramics of (1 ? x)Bi0.5Na0.5TiO3xBi(Al0.5Ga0.5)O3 (x = 0, 0.02, 0.03, 0.04, and 0.05) were synthesized using a conventional ceramic fabrication method. Their structures and electrical properties were investigated. All the samples show a typical ferroelectric P(E) loops and S(E) curves at room temperature. The optimal properties are obtained at the composition of the x = 0.03. The substitution of Bi(Al0.5Ga0.5)O3 enhances piezoelectric constant and increases Curie temperature from 58 pC/N and 310°C of pure BNT to 93 pC/N and 325°C of the x = 0.03. The temperature‐dependent P(E) loops and S(E) curves of 0.97BNT–0.03BAG indicate that phase transition from ferroelectric to antiferroelectric takes place over a very wide temperature region from 80°C to 180°C. The results show that the introduction of BAG improves the electrical properties of BNT.  相似文献   

3.
Relaxor ferroelectrics (0.94 ? x)(Bi0.5Na0.5)TiO3–0.06BaTiO3?x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT) (0 ≤ x ≤ 0.5), were prepared by a solid‐state reaction process, and their structures were characterized by the transmission electron microscopy and Raman spectroscopy. The BNT–BT–0.3SBT has a very high electrostrictive strain S = 0.152% with hysteresis‐free behavior, much more than the reported S in other ferroelectrics. SP2 profiles perfectly follow the quadratic relation, which indicates a purely electrostrictive effect with a high electrostrictive coefficient (Q11) of 0.0297 m4/C2. Even, its Q11 keeps at a high level in the temperature range from ambient temperature to 180°C. The field‐induced large electrostrictive strain of BNT–BT–0.3SBT was attributed to the existence of ferroelectric nanodomains.  相似文献   

4.
The properties of relaxor ceramics in the compositional series (1?x)K0.5Bi0.5TiO3xBa(Ti0.8Zr0.2)O3 have been investigated. Values of Tm, the temperature of maximum relative permittivity, decreased from 380°C at = 0.0 to below room temperature for > 0.7. Compositions = 0.1 and 0.2 were piezoelectric and ferroelectric. The maximum value of d33 piezoelectric charge coefficient, 130 pC/N, and strain, 0.14%, occurred at = 0.1. Piezoelectric properties of = 0.1 were retained after thermal cycling from room temperature to 220°C, consistent with results from high‐temperature X‐ray diffraction indicating a transition to single‐phase cubic at ~300°C.  相似文献   

5.
Lead‐free sodium bismuth titanate–aluminate bismuth [0.97(Na0.5Bi0.5)TiO3–0.03BiAlO3] solid‐solution films deposited on (100) Pt/TiO2/SiO2/Si substrates by a sol–gel process were pyrolyzed and annealed at different temperatures. The film annealed at 725°C with a pyrolysis temperature of 410°C exhibited the optimal electrical properties and excellent piezoelectric properties, with a remanent polarization 2Pr of 38 μC/cm2 and a leakage current density of 10?7–10?6 A/cm2 (E < 200 kV/cm). The values of the dielectric constant and dissipation factor at 100 kHz were 422 and 0.039, respectively. The piezoelectric coefficient of the film after poling at 168 kV/cm was found to be 57 pm/V, making the BNT‐BA films a viable lead‐free alternative to the lead‐based materials in such as biosensors and ultrasonic transducers.  相似文献   

6.
A ternary solid solution (1 ? x)(0.88Bi0.5Na0.5TiO3–0.12BaTiO3)‐xBi(Zn0.5Ti0.5)O3 (BNBZT, BNBZTx) was designed and fabricated using the traditional solid‐state reaction method. The temperature and composition dependence of dielectric, ferroelectric, piezoelectric, and fatigue properties were systematically investigated and a schematic phase diagram was proposed. The substitution with Bi(Zn0.5Ti0.5)O3 was found to shift the phase transition (ferroelectric tetragonal to relaxor pseudocubic phase) to lower temperatures. At a critical composition x of 0.05, large electric‐field‐induced strain response with normalized strain Smax/Emax as high as 526 pm/V was obtained under a moderate field of 4 kV/mm around room temperature. The strain exhibited good temperature stability within the temperature range of 25°C–120°C. In addition, excellent fatigue‐resistant behavior was observed in the proposed BNBZT solid solution after 106 bipolar cycles. These give the BNBZT system great potential as environmental friendly solid‐state actuator.  相似文献   

7.
Lead‐free multiferroic ceramics of BiFeO3‐BaTiO3‐Bi0.5Na0.5TiO3 have been prepared by a conventional ceramic technique. The microstructure, multiferroic, and piezoelectric properties of the ceramics have been studied. The ceramics sintered at 1000°C for 2 h possess a pure perovskite structure and a morphotropic phase boundary of rhombohedral and tetragonal phases is formed at = 0.02. After the addition of Bi0.5Na0.5TiO3, two dielectric anomalies are observed at high temperatures (Tm ~ 510°C–570°C and T2 ~ 720°C). The phase transition around Tm becomes wider gradually with increasing x. The ferroelectricity, piezoelectricity, and ferromagnetism of the ceramics are significantly improved after the addition of Bi0.5Na0.5TiO3. High resistivity (~1.3 × 109 Ω·cm), strong ferroelectricity (Pr = 27.4 μC/cm2), good piezoelectricity (d33 =140 pC/N, kp = 31.4%), and weak magnetic properties (Mr =0.19 emu/g) are observed.  相似文献   

8.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

9.
Solid solution formation in the lead‐free binary system (1?x)K0.5Bi0.5TiO3?xBi(Mg0.5Ti0.5)O3 has been studied for compositions x ≤ 0.12. X‐ray powder diffraction shows single‐phase perovskite for x < 0.1, and a mixed phase region between tetragonal and pseudocubic phases for compositions 0.04 ≤ x ≤ 0.06. Large electromechanical strains of ~0.3% at fields of 50 kV/cm are recorded in the mixed phase region, with d33* (Smax/Emax) values of ~600 pm/V. The materials sustain polarization at low electric fields with remnant polarization ~18 μC/cm2 and coercive field ~20 kV/cm for x = 0.06. Relative permittivity‐temperature plots display relaxor characteristics, with peak temperature ~340°C.  相似文献   

10.
Ceramics in the system 0.45Ba0.8Ca0.2TiO3–(0.55?x)Bi(Mg0.5Ti0.5)O3xNaNbO3, x = 0–0.02 were fabricated by a conventional solid‐state reaction route. X‐ray powder diffraction indicated cubic or pseudocubic symmetry for all samples. The parent 0.45Ba0.8Ca0.2TiO3–0.55Bi(Mg0.5Ti0.5)O3 composition is a relaxor dielectric with a near‐stable temperature coefficient of relative permittivity, εr = 950 ± 10% across the temperature range 80°C–600°C. Incorporation of NaNbO3 at x = 0.2 extends the lower working temperature to ≤25°C, with εr = 575% ± 15% from temperatures ≤25°C to >400°C, and tan δ < 0.025 from 25°C to 400°C. Values of dc resistivity ranged from ~109 Ω·m at 250°C to ~106 Ω·m at 500°C. The properties suggest that this material may be of interest for high‐temperature capacitor applications.  相似文献   

11.
0.6BiFeO3–0.4(Bi0.5K0.5)TiO3 (0.6BF–0.4BKT) ceramic samples with 0.0–4.0 mol% CuO were prepared by the solid‐state reaction. The CuO addition aided the densification of the samples and slightly increased the lattice constant. The relaxor‐like defuse dielectric peak of 0.6BF–0.4BKT became sharper with increasing the CuO content. Polarization–electric field curve of the undoped 0.6BF–0.4BKT was a pinched loop in the as‐sintered state, while that was a square hysteresis with a large remanent polarization of 48 μC/cm2 after the thermal quenching, demonstrating a strong domain wall pinning due to defect dipoles. We found that the CuO addition up to 2.0 mol% facilitates the polarization switching in the as‐sintered samples to increase the remanent polarization and the piezoelectric d33 coefficient. The results of the structural and electrical investigations suggested that the copper ion acts as a donor in 0.6BF–0.4BKT by compensating the potassium vacancy created by the evaporation of K2O during the calcination and sintering processes.  相似文献   

12.
Lead‐free BNT‐based piezoceramics, (1?x)Bi0.5Na0.5TiO3xBi(Mg0.5Ti0.5)O3 [(1?x)BNT–xBMT] (0.00 ≤  0.06) binary system, were synthesized using a conventional ceramic fabrication method. Effect of Bi(Mg0.5Ti0.5)O3 (BMT) substitution on room temperature (RT) crystal structure, and temperature dependence of electric properties were investigated. The XRD indicates that a pure perovskite phase is formed. The introduction of BMT decreases EC of BNT from 7.3 to 4.0 kV/mm, and increases d33 from 58 pC/N to 110 pC/N for the = 0.05. The system shows a typical ferroelectric (FE) polarization loop P(E) and butterfly bipolar strain‐electric S(E) curve at RT. For the composition of 0.95BNT–0.05BMT antiferroelectric (AFE) phase appears near 80°C, characterized by a constricted P(E) loop and altered bipolar S(E) butterfly, and gradually prevails with increasing temperature. Temperature dependence of dielectric constant shows that TC increases from 310°C for pure BNT to 352°C for the = 0.05. The results indicate that the piezoelectric properties of BNT have been improved by means of Bi(Mg0.5Ti0.5)O3 substitution.  相似文献   

13.
(1 ? x)(0.85Bi0.5Na0.5TiO3–0.11Ba0.5K0.5TiO3–0.04BaTiO3)‐ xK0.5Na0.5NbO3 lead‐free piezoelectric ceramics with = 0.00, 0.02, 0.03, 0.04, 0.05, and 0.10 were prepared by a conventional solid state method. A coexistence of rhombohedral (R) and tetragonal (T) phases was found in the system, which tended to evolve into pseudocubic symmetry when x increases. The = 0.04 sample exhibited improved electrical properties: the dielectric constant εr = 1900 with the low loss tangents 0.06, the Smax/Emax of ~400 and ~460 pm/V under unipolar and bipolar electric field, respectively. Meanwhile, piezoelectric constant d33 still maintained ~160 pC/N. These could be owed to the formation of polar nanoregions for relaxor phase.  相似文献   

14.
A new type of (0.7?x)Bi0.5Na0.5TiO3‐0.3Sr0.7Bi0.2TiO3xLaTi0.5Mg0.5O3 (LTM1000x,= 0.0, 0.005, 0.01, 0.03, 0.05 wt%) lead‐free energy storage ceramic material was prepared by a combining ternary perovskite compounds, and the phase transition, dielectric, and energy storage characteristics were analyzed. It was found that the ceramic materials can achieve a stable dielectric property with a large dielectric constant in a wide temperature range with proper doping. The dielectric constant was stable at 2170 ± 15% in the temperature range of 35‐363°C at LTM05. In addition, the storage energy density was greatly improved to 1.32 J/cm3 with a high‐energy storage efficiency of 75% at the composition. More importantly, the energy storage density exhibited good temperature stability in the measurement range, which was maintained within 5% in the temperature range of 30‐110°C. Particularly, LTM05 show excellent fatigue resistance within 106 fatigue cycles. The results show that the ceramic material is a promising material for temperature‐stable energy storage.  相似文献   

15.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

16.
For enhancing the piezoelectric properties of ceramics (Bi0.5Na0.5)ZrO3 (BNZ) was used to partially substitute (K0.5Na0.5)NbO3 (KNN). The addition of BNZ changes the symmetry of KNN ceramics from orthorhombic to tetragonal, and finally to rhombohedral phase. A new phase boundary with both rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions near room temperature is identified for KNN–0.050BNZ ceramics, where optimum electrical properties were obtained: d33 = 360 pC/N, kp = 32.1%, εr = 1429, tanδ = 3.5%, and TC = 329°C. The results indicated a new method for designing high‐performance lead‐free piezoelectric materials.  相似文献   

17.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

18.
0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT) epitaxial thin films were grown on SrRuO3 (SRO) coated (001)‐oriented SrTiO3 (STO) single crystal substrates by pulsed laser deposition under different oxygen partial pressures in the processing of deposition. The effects of oxygen partial pressure on structure, cation stoichiometry, surface morphology, leakage current behavior, ferroelectric, and piezoelectric properties were investigated. Both the lattice parameters and (Ba + Ca)/(Ti + Zr) cation ratio decrease with increasing oxygen partial pressure. The BCZT thin film with the ideal cation stoichiometry was obtained under 200 mTorr, giving rise to a remanent polarization Pr = 14.5 μC/cm2 and effective piezoelectric coefficient d33 = 96 ± 5 pm/V.  相似文献   

19.
0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 (x = ?0.04, 0, 0.02; named NB0.46T‐6BT, NB0.50T‐6BT, NB0.52T‐6BT, respectively) lead‐free piezoelectric ceramics were prepared via the solid‐state reaction method. Effects of Bi3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X‐ray diffraction peaks of ABO3 perovskite structure. The lattice parameters increase with the increase in the Bi3+ content. The electron probe microanalysis demonstrates that the excess Bi2O3 in the starting composition can compensate the Bi2O3 loss induced during sample processing. The size and shape of grains are closely related to the Bi3+ content. For the unpoled NB0.50T‐6BT and NB0.52T‐6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB0.46T‐6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature (Td) for all ceramics and the Td values increase with the Bi3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB0.46T‐6BT, NB0.50T‐6BT and NB0.52T‐6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi3+ amount is related to the effect of oxygen vacancies.  相似文献   

20.
Thin films with the composition 70 mol% Na0.5Bi0.5TiO3 + 30 mol% NaTaO3 were prepared by sol–gel synthesis and spin coating. The influence of the annealing temperature on the microstructural development and its further influence on the dielectric properties in the low‐ (kHz–MHz) and microwave‐frequency (15 GHz) ranges were investigated. In the low‐frequency range we observed that with an increasing annealing temperature from 550°C to 650°C the average grain size increased from 90 to 170 nm, which led to an increase in the dielectric permittivity from 130 to 240. The temperature‐stable dielectric properties were measured for thin films annealed at 650°C in the temperature range between ?25°C and 150°C. The thin films deposited on corundum substrates had a lower average grain size than those on Si/SiO2/TiO2/Pt substrates. The highest average grain size of 130 nm was obtained for a thin film annealed at 600°C, which displayed a dielectric permittivity of 130, measured at 15 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号