首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture.  相似文献   

2.
The metal doped TiO2 was prepared with Fe(III), Co(II), Ni(II), Cu(II), Ag(I), La (III), Nd(III), Ho(III), and Y(III) as doped catalysts. These catalysts were carried by ceramic foams to enhance their photocatalytic efficiency, which was later studied with methylene blue (MB) and Escherichia coli (E. coli) as targets. The results suggested that the photocatalytic activities of TiO2 were enhanced when ceramic foams were used as catalyst carriers and that the photocatalytic efficiency could also be significantly increased by the dopants, especially by Ag(I) and rare earth. In the bactericidal activity testing, the inhibitory effect of TiO2 on E. coli was enhanced significantly when ceramic foams were used as carriers. Ag(I) doped TiO2 showed the greatest inhibition on E. coli. As to the E. coli cells treated by Ag(I) doped TiO2, the observation with a Scanning Electronic Microscope (SEM) suggested that the cells could no longer maintain their morphology and the spheroplasts were formed after the treatment.  相似文献   

3.
The antimicrobial activity of nanoparticles (NPs) is a desirable feature of various products but can become problematic when NPs are released into different ecosystems, potentially endangering living microorganisms. Although there is an abundance of advanced studies on the toxicity and biological activity of NPs on microorganisms, the information regarding their detailed interactions with microbial cells and the induction of oxidative stress remains incomplete. Therefore, this work aimed to develop accurate oxidation stress profiles of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis strains treated with commercial Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs. The methodology used included the following determinations: toxicological parameters, reactive oxygen species (ROS), antioxidant enzymes and dehydrogenases, reduced glutathione, oxidatively modified proteins and lipid peroxidation. The toxicological studies revealed that E. coli was most sensitive to NPs than B. cereus and S. epidermidis. Moreover, NPs induced the generation of specific ROS in bacterial cells, causing an increase in their concentration, which further resulted in alterations in the activity of the antioxidant defence system and protein oxidation. Significant changes in dehydrogenases activity and elevated lipid peroxidation indicated a negative effect of NPs on bacterial outer layers and respiratory activity. In general, NPs were characterised by very specific nano-bio effects, depending on their physicochemical properties and the species of microorganism.  相似文献   

4.
Cu nano-particles (Cu-NPs) were embedded into the SiO2 layer of a Cu/SiO2/Pt structure to examine their influence on resistive switching characteristics. The device showed a reversible resistive switching behavior, which was due to the formation and rupture of a Cu-conducting filament with an electrochemical reaction. The Cu-NPs enhanced the local electric field within the SiO2 layer, which caused a decrease in the forming voltage. During successive switching processes, the Cu-NP was partially dissolved, which changed its shape. Therefore, the switching voltages were not reduced. Moreover, the Cu-NPs caused a non-uniform Cu concentration within the SiO2 layer; thus, the Cu-conducting filament should be formed in a high Cu concentration region, which improves switching dispersion. The Cu-NPs within the SiO2 layer stabilize the resistive switching, resulting in a larger switching window and better endurance characteristics.  相似文献   

5.
Immobilized TiO2 nanotube electrodes with high surface areas were grown via electrochemical anodization in aqueous solution containing fluoride ions for photocatalysis applications. The photoelectrochemical properties of the grown immobilized TiO2 film were studied by potentiodynamic measurements (linear sweep voltammetry), in addition to the calculation of the photocurrent response. The nanotube electrode properties were compared to mesoporous TiO2 electrodes grown by anodization in sulfuric acid at high potentials (above the microsparking potential) and to 1 g/l P-25 TiO2 powder. Photocatalyst films were evaluated by high resolution SEM and XRD for surface and crystallographic characterization. Finally, photoelectrocatalytic application of TiO2 was studied via inactivation of E. coli. The use of the high surface area TiO2 nanotubes resulted in a high photocurrent and an extremely rapid E. coli inactivation rate of ∼106 CFU/ml bacteria within 10 min. The immobilized nanotube system is proven to be the most potent electrode for water purification.  相似文献   

6.
Composite nanofibers consisting of Mn2O3 and TiO2 were prepared by the electrospinning process, and tested as Gram-class-independent antibacterial agent and photocatalyst for organic pollutants degradation. Initially, electrospinning of a sol–gel consisting of titanium isopropoxide, manganese acetate tetrahydrate and poly(vinyl pyrrolidone) was used to produce hybrid polymeric nanofibers. Calcination of the obtained nanofibers in air at 650 °C led to produce good morphology Mn2O3/TiO2 nanofibers. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the as-spun nanofibers and the calcined product. X-ray powder diffractometry (XRD) analysis was also used to characterize the chemical composition and the crystallographic structure of the sintered nanofibers. The antibacterial activity of Mn2O3/TiO2 nanofibers against Gram negative and Gram positive bacteria was investigated by calculating the minimum inhibitory concentration after treatment with the nanofibers. Investigations revealed that the lowest concentration of Mn2O3/TiO2 nanofibers solution inhibiting the growth of Staphylococcus aureus ATCC 29231 and Escherichia coli ATCC 52922 strains is 0.4 and 0.8 μg/ml, respectively. Incorporation of Mn2O3 significantly improved the photodegradation of methylene blue (MB) dye under the visible light irradiation due to enhancing rutile phase formation in the TiO2 nanofibers matrix.  相似文献   

7.
Ag- and Cu-supported TiO2 photocatalysts showed high activity for the reduction of N2O to N2 at room temperature in the presence of CH3OH and H2O vapor. The suppression by H2O on the activity was not observed in the present photocatalyst system. The remarkable behavior of the Ag and Cu co-catalysts for TiO2 photocatalysts agreed well with that of electro- and thermal catalyses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The present work reports the synthesis and evaluation of antimicrobial activity of polyindole–TiO2 nanocomposite. Polyindole–TiO2 nanocomposite was synthesized by aqueous in situ chemical polymerization of indole using ammonium persulfate as an oxidant under ultrasonic condition. The synthesized polyindole and polyindole–TiO2 nanocomposites were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, and X-ray diffraction techniques. A sharp peak at ~1,402?cm?1 is due to the stretching vibrations of O?Ti?O bond in polyindole–TiO2 nanocomposite. The X-ray diffraction pattern shows the major diffraction peaks at 25°C and 48°C, indicating TiO2 in anatase form. Polyindole–TiO2 shows maximum activity against gram-positive Staphylococcus aureus and Bacillus subtilis as compared to gram-negative Escherichia coli.  相似文献   

9.
10.
The effect of TiO2 on the formation and microstructure of magnesium aluminate spinel (MgAl2O4) at 1600 °C in air and reducing conditions were investigated. Under reducing conditions, stoichiometric MgAl2O4 spinel shifted toward alumina-rich types owing to volatilization of MgO, resulting in an increase in the porosity of fired samples. Addition of graphite to mixtures of MgO and Al2O3 intensified the reducing conditions and accelerated the formation of non-stoichiometric MgAl2O4. For TiO2-containing samples on addition of MgAl2O4, magnesium aluminum titanium oxide (MgxAl2(1−x)Ti(1+x)O5, x = 0.2 or 0.3) was detected as a minor phase. Under reducing conditions, XRD peak shifts were smaller for TiO2-containing samples than for samples without TiO2 owing to the formation of a solid solution of TiO2 in MgAl2O4 and establishment of alumina-rich spinel, which have opposite effects on increasing the lattice parameter. In bauxite-containing samples, MgAl2O4 spinel, corundum, magnesium orthotitanate spinel (Mg2TiO4) and amorphous phases were identified. Mg2TiO4 spinel formed a complete solid solution with MgAl2O4 spinel but Mg2TiO4 remained as a distinct phase owing to the heterogeneous microstructure of bauxite-containing samples. Also dense microstructure established in air fired TiO2 containing samples. The results are discussed with emphasis on the application and design of alumina-magnesia-carbon refractory materials, which are used in the steel industry.  相似文献   

11.
Spark plasma sintering was used to fabricate Cu/TiO2−x composites by adding Cu powder to nonstoichiometric titanium dioxide, TiO2−x. The composition and crystal forms of the composites were examined. The thermoelectric properties of the composites were measured and the effects of composite formation on these properties were discussed. The rule of mixture (ROM) of composite and general effective medium theory (GEM) were used to investigate the composite effects of the Cu/TiO2−x composites. The results revealed that the electrical resistivities of the composites was much lower than that of TiO2−x. As the added amount of Cu powder increased, the electrical properties of the composites shifted from semiconductor behavior to metallic behavior. The thermoelectric performances of the composites improved as a result of composition formation. The thermoelectric performance can be improved by adjusting the balance among electrical resistivity, thermal conductivity and the Seebeck coefficient, based on the composite effects.  相似文献   

12.
In this work, a series of titania-supported NiO and CdO materials were synthesized by a modified sol-gel process. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and transmission electron microscopy (TEM). The activities of titania-supported NiO and CdO photocatalysts for photocatalytic degradation of Remazole Red F3B (RR) dye, under simulated sunlight, were investigated. The photocatalytic mineralization of an RR dye solution over various NiO-x/TiO2 and CdO-x/TiO2 photocatalysts under simulated sunlight was investigated. It was worthy noticing that the photocatalytic activity of titania improved using the prepared catalysts. The prepared TiO2, NiO-5/TiO2, and CdO-2/TiO2 photocatalysts exhibited higher photocatalytic activity under simulated sunlight than did commercial TiO2. The prepared photocatalysts were stable after photocatalytic degradation of the dye. The observed photocatalytic mineralization of the dye was 51 and 71% over NiO-10/TiO2 and CdO-2/TiO2 after 180 min of irradiation, respectively. Juxtaposing a p-NiO-5/TiO2 semiconductor provided a potential approach for decreasing charge recombination. The prepared photocatalystsNiO-5/TiO2 and CdO-2/TiO2 are promising composites for the solar detoxification of textile wastewater.  相似文献   

13.
This study investigated the toxicity of Cu (1, 10, 15, and 25 mol%) loaded TiO2 and pure TiO2 nanometersized photocatalysts during the development of zebrafish embryogenesis. The hatch rate decreased in the Cu x TiO y nanoparticles exposed groups (10, 20 ppt) compared to pure TiO2 nano-particles (10, 20 ppt) exposed or control groups. These Cu x TiO y and TiO2 nanoparticles led to developing mutated embryos with abnormal notochord formation, no tail, damaged eyes and abnormal heart development. Exposure to Cu x TiO y and pure TiO2 nanoparticles led to glutathione increase, catalase activity increase, GST increase and GSR increase than control. Penetration of the Cu x TiO y and pure TiO2 nanoparticles to the embryo was also tested. It was observed that Cu x TiO y and pure TiO2 nanoparticles penetrated into cells. Moreover Cu x TiO y penetrated into the skin, nerve and yolk sac epithelium cells on the zebrafish larvae as aggregated particles, which may induce the direct interaction between nanoparticles and cell to cause adverse biological responses. As a result, the Cu-loaded TiO2 nanoparticles had the toxicity of zebrafish embryo and larvae in the water environment.  相似文献   

14.
Cu/ZnO/TiO2 catalysts were prepared via the coprecipitation method. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectrometry, temperature programmed reduction, and N2 adsorption. The catalytic activity of Cu/ZnO/TiO2 catalyst in gas phase hydrogenation of maleic anhydride in the presence of n-butanol was studied at 235–280 °C and 1 MPa. The conversion of maleic anhydride was more than 95.7% and the selectivity of tetrahydrofuran was up to 92.7%. At the same time, n-butanol was converted to butyraldehyde and butyl butyrate via reactions, namely, dehydrogenation, disproportionation, and esterification. There were two kinds of CuO species present in the calcined Cu/ZnO/TiO2 catalysts. At a lower copper content, the CuO species strongly interacted with ZnO and TiO2; at a higher copper content, both the surface-anchored and bulk CuO species were present. The metallic copper (CuO) produced by the reduction of the surface-anchored CuO species favored the deep hydrogenation of maleic anhydride to tetrahydrofuran. The deep hydrogenation activity of Cu/ZnO/TiO2 catalyst increased with the decrease of crystallite sizes of CuO and the increase of microstrain values. Compensations of reaction heat and H2 in the coupling reaction of maleic anhydride hydrogenation and n-butanol dehydrogenation were distinct.  相似文献   

15.
This work exploits the coexistence of both resistance and capacitance memory effects in TiO2-based two-terminal cells. Our Pt/TiO2/TiO x /Pt devices exhibit an interesting combination of hysteresis and non-zero crossing in their current-voltage (I-V) characteristic that indicates the presence of capacitive states. Our experimental results demonstrate that both resistance and capacitance states can be simultaneously set via either voltage cycling and/or voltage pulses. We argue that these state modulations occur due to bias-induced reduction of the TiO x active layer via the displacement of ionic species.  相似文献   

16.
Catalytic combustion of benzene over supported metal oxides has been investigated. The catalysts have been prepared by incipient wetness method and characterized by XRD, FT-Raman, ESR and TPR. Among supported metal oxides, CuOx, supported on TiO2 is found to have the highest activity for benzene oxidation. In addition, among the catalysts of copper oxide supported on TiO2, A12O3 and SiO2, titania-supported catalyst (CuOx/TiO2) gives the highest catalytic activity. CuOx/TiO2 (Cu loading 5.5 wt%) shows the total oxidation of benzene at about 250 °C. From the ESR and FT-Raman results, the CuO dispersed on the TiO2 surface acts as an active site of CuOx/TiO2 catalysts on the oxidative decomposition of benzene. The catalytic activity gradually increases with an increase of Cu loading on TiO2. When Cu loading reaches 5.5 wt%, the total conversion temperature is lowered to 300 °C. However, the catalytic activity considerably decreases at 7 wt% Cu loading. The catalytic activity increased with an increase of oxygen concentration but the concentration of benzene showed no difference in the benzene conversion. This result suggests that the rate determining step is the adsorption of oxygen.  相似文献   

17.
Iron or tungsten-doped nano TiO2 were successfully synthesized from TiCl4. All of the samples showed anatase phase of TiO2. For the iron-doped TiO2, Iron ion was well dispersed in the TiO2 lattice. However, tungsten-doped TiO2 formed 12-tungstate with anatase TiO2. As the concentration of tungsten increased, 12-tungstate disappeared. The photocatalytic oxidation of acetaldehyde was evaluated to examine the photocatalytic characteristics of metal-doped TiO2. Because of the surface containing metal oxide or metal precursors at high concentration metal ion, increasing the concentration of W or Fe ion decreased the reactivity. The reaction rate was drastically increased after 300 °C heat treatment. Furthermore, the photocatalytic activity of iron- or tungsten-doped TiO2 was higher than that of synthesized pure TiO2 and commercial TiO2.  相似文献   

18.
Compact TiO2 has been introduced onto the surface of an indium tin oxide glass slide (ITO), using an aerosol-assisted chemical vapour deposition method. This serves as a blocking layer for a dye-sensitised solar cell (DSSC). The thickness of the compact TiO2 could be controlled by deposition time. X-ray diffraction and Raman spectroscopy analyses reveal that the compact TiO2 is made up of mixed anatase and rutile phases. The field emission scanning electron microscopy image displays a pyramidal morphology of the compact TiO2. A layer of P25 paste was then smeared onto the compact TiO2-modified ITO, using the doctor's blade method. A post-treatment procedure was applied to remove the contaminants from the prepared hybrid film, by immersing in a hydrochloric acid solution. The photoelectrochemical measurements and JV characterisation of the hybrid film show an approximately fourfold increase in photocurrent density generation (114.22 µA/cm2), and approximately 25% enhancement of DSSC conversion efficiency (4.63%), compared to the acid-treated P25 paste alone (3.68%).  相似文献   

19.
TiO2- and CeO2-promoted bulk Ni2P catalysts were prepared by impregnation and in-situ H2 temperature-programmed reduction method. The prepared catalysts were characterized by XRD and XPS. The hydrogenation activities of the catalysts were studied using 1.5 wt.% 1-heptene in toluene and 1.0 wt.% phenylacetylene in ethanol as the model feeds. The results indicate that bulk Ni2P possesses low hydrogenation activity but is tunable by simply controlling the content of the additives (TiO2 or CeO2), suggesting that TiO2 and CeO2 are effective promoters to enhance the hydrogenation activity of Ni2P.  相似文献   

20.
Stable nano-TiO2/polyurethane (PU) emulsions were prepared via in situ reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization of 2-hydroxyethyl acrylate (HEA)-capped PU macromonomer, using azobisisobutyronitrile (AIBN) as a radical initiator and 2-{[(butylsulfanyl)carbonothioyl]sulfanyl} propanoic acid (BCSPA) anchored onto TiO2 nanoparticles (TiO2-BCSPA) as a RAFT agent. When the molar ratio of AIBN to TiO2-BCSPA was changed from 1:3 to 1:10, the polydispersity index (PDI) of polymers in the emulsions decreased from 1.83 to 1.06, due to more effective RAFT polymerization in the emulsions. The TiO2 nanofillers were well-dispersed throughout the polymer films. The tensile strengths of the nanocomposite films were significantly enhanced due to coordination bonding between the TiO2 nanofillers and the –COOH end groups of the polymers, as evidenced by the FT-IR spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号