首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A secure authentication and billing architecture for wireless mesh networks   总被引:2,自引:0,他引:2  
Wireless mesh networks (WMNs) are gaining growing interest as a promising technology for ubiquitous high-speed network access. While much effort has been made to address issues at physical, data link, and network layers, little attention has been paid to the security aspect central to the realistic deployment of WMNs. We propose UPASS, the first known secure authentication and billing architecture for large-scale WMNs. UPASS features a novel user-broker-operator trust model built upon the conventional certificate-based cryptography and the emerging ID-based cryptography. Based on the trust model, each user is furnished with a universal pass whereby to realize seamless roaming across WMN domains and get ubiquitous network access. In UPASS, the incontestable billing of mobile users is fulfilled through a lightweight realtime micropayment protocol built on the combination of digital signature and one-way hash-chain techniques. Compared to conventional solutions relying on a home-foreign-domain concept, UPASS eliminates the need for establishing bilateral roaming agreements and having realtime interactions between potentially numerous WMN operators. Our UPASS is shown to be secure and lightweight, and thus can be a practical and effective solution for future large-scale WMNs. Yanchao Zhang received the B.E. degree in Computer Communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, and the M.E. degree in Computer Applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002. Since September 2002, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications: Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 (Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

2.
Integration of different kinds of wireless networks to provide people seamless and continuous network access services is a major issue in the B3G network. In this paper, we propose and implement a novel Heterogeneous network Integration Support Node design (HISN) and a distributed HISN network architecture for the integration of heterogeneous networks, under which the Session Mobility, Personal Mobility, and Terminal Mobility for mobile users can be maintained through the Session Management mechanism. Thus, the HISN node can serve as an agent for the user to access Internet services independent of underlying communication infrastructure. Our design is transparent to the bearer networks and the deployment of the HISN network does not need to involve the operators of the heterogeneous wireless networks. This paper is an extension of the work that won the championship of the Mobile Hero contest sponsored by Industrial Development Bureau of Ministry of Economic Affairs, Taiwan, R.O.C., and was awarded USD 30,000. The work of Lin, Chang and Cheng was supported in part by the National Science Council (NSC), R.O.C, under the contract number NSC94-2213-E-002-083 and NSC94-2213-E-002-090, and NSC 94-2627-E-002-001, Ministry of Economic Affairs (MOEA), R.O.C., under contract number 93-EC-17-A-05-S1-0017, the Computer and Communications Researches Labs/Industrial Technology Research Institute (CCL/ITRL), Chunghwa Telecom Labs, Telcordia Applied Research Center, Taiwan Network Information Center (TWNIC), and Microsoft Corporation, Taiwan. The work of Fang was supported in part by the US National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and US National Science Foundation under grant DBI-0529012. Phone Lin (M’02-SM’06) received his BSCSIE degree and Ph.D. degree from National Chiao Tung University, Taiwan, R.O.C. in 1996 and 2001, respectively. From August 2001 to July 2004, he was an Assistant Professor in Department of Computer Science and Information Engineering (CSIE), National Taiwan University, R.O.C. Since August 2004, he has been an Associate Professor in Department of CSIE and Graduate Institute of Networking and Multimedia, National Taiwan University, R.O.C. His current research interests include personal communications services, wireless Internet, and performance modeling. Dr. Lin is an Associate Editor for IEEE Transactions on Vehicular Technology, a Guest Editor for IEEE Wireless Communications special issue on Mobility and Resource Management, and a Guest Editor for ACM/Springer MONET special issue on Wireless Broad Access. He is also an Associate Editorial Member for the WCMC Journal. P. Lin’s email and website addresses are plin@csie.ntu.edu.tw and http://www.csie.ntu.edu.tw/∼plin, respectively. Huan-Ming Chang received the BSCSIE degree and Master CSIE degree from National Taiwan University, R.O.C. in 2003 and 2005, respectively. His current research interest includes wireless Internet. H.-M. Chang’s email address is r91114@csie.ntu.edu.tw. Yuguang Fang received a Ph.D. degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion to Associate Professor with tenure in August 2003 and to Full Professor in August 2005. He has published over 180 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000). Shin-Ming Cheng received the BSCSIE degree in 2000 from National Taiwan University, Taiwan, R.O.C., where he is currently working toward the Ph.D. degree in the Department of Computer Science and Information Engineering, National Taiwan University. His current research interests include mobile computing, personal communications services, and wireless Internet. S.-M. Cheng’s email and website addresses are shimi@pcs.csie.ntu.edu.tw and http://www.pcs.csie.ntu.edu.tw/∼shimi, respectively.  相似文献   

3.
In order to support the diverse Quality of Service (QoS) requirements for differentiated data applications in broadband wireless networks, advanced techniques such as space-time coding (STC) and orthogonal frequency division multiplexing (OFDM) are implemented at the physical layer. However, the employment of such techniques evidently affects the subchannel-allocation algorithms at the medium access control (MAC) layer. In this paper, we propose the QoS-driven cross-layer subchannel-allocation algorithms for data transmissions over asynchronous uplink space-time OFDM-CDMA wireless networks. We mainly focus on QoS requirements of maximizing the best-effort throughput and proportional bandwidth fairness, while minimizing the upper-bound of scheduling delay. Our extensive simulations show that the proposed infrastructure and algorithms can achieve high bandwidth fairness and system throughput while reducing scheduling delay over wireless networks. Xi Zhang (S’89-SM’98) received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (Electrical Engineering—Systems) from The University of Michigan, Ann Arbor, USA. He is currently an Assistant Professor and the Founding Director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. He was an Assistant Professor and the Founding Director of the Division of Computer Systems Engineering, Department of Electrical Engineering and Computer Science, Beijing Information Technology Engineering Institute, Beijing, China, from 1984 to 1989. He was a Research Fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Queensland, Australia, under a Fellowship from the Chinese National Commission of Education. He worked as a Summer Intern with the Networks and Distributed Systems Research Department, Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories Research, Florham Park, NJ, in 1997. He has published more than 80 technical papers. His current research interests focus on the areas of wireless networks and communications, mobile computing, cross-layer designs and optimizations for QoS guarantees over mobile wireless networks, wireless sensor and Ad Hoc networks, wireless and wireline network security, network protocols design and modeling for QoS guarantees over multicast (and unicast) wireless (and wireline) networks, statistical communications theory, random signal processing, and distributed computer-control systems. Dr. Zhang received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, an Associated Editor for the IEEE Transactions on Vehicular Technology, and and Associated Editor for the IEEE Communications Letters, and is also currently serving as a Guest Editor for the IEEE Wireless Communications Magazine for the Special Issues of “Next Generation of CDMA vs. OFDMA for 4G Wireless Applications”. He has served or is serving as the Panelist on the U.S. National Science Foundation Research-Proposal Review Panel in 2004, the WiFi-Hotspots/WLAN and QoS Panelist at the IEEE QShine 2004, as the Symposium Chair for the IEEE International Cross-Layer Designs and Protocols Symposium within the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) 2006, the Technical Program Committee Co-Chair for the IEEE IWCMC 2006, the Poster Chair for the IEEE QShine 2006, the Publicity Co-Chair for the IEEE WirelessCom 2005, and as the Technical Program Committee members for IEEE GLOBECOM, IEEE ICC, IEEE WCNC, IEEE VTC, IEEE QShine, IEEE WoWMoM, IEEE WirelessCom, and IEEE EIT. He is a Senior Member of the IEEE and a member of the Association for Computing Machinery (ACM). Jia Tang (S’03) received the B.S. degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 2001. He is currently a Research Assistant working towards the Ph.D. degree in the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design and optimizations, wireless quality-of-service (QoS) provisioning for mobile multimedia networks, wireless diversity techniques, and wireless resource allocation. Mr. Tang received the Fouraker Graduate Research Fellowship Award from the Department of Electrical and Computer Engineering, Texas A&M University in 2005.  相似文献   

4.
In this paper, we develop an analytical model to evaluate the delay performance of the burst-frame-based CSMA/CA protocol under unsaturated conditions, which has not been fully addressed in the literature. Our delay analysis is unique in that we consider the end-to-end packet delay, which is the duration from the epoch that a packet enters the queue at the MAC layer of the transmitter side to the epoch that the packet is successfully received at the receiver side. The analytical results give excellent agreement with the simulation results, which represents the accuracy of our analytical model. The results also provide important guideline on how to set the parameters of the burst assembly policy. Based on these results, we further develop an efficient adaptive burst assembly policy so as to optimize the throughput and delay performance of the burst-frame-based CSMA/CA protocol. Kejie Lu received the B.E. and M.E. degrees in Telecommunications Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1994 and 1997, respectively. He received the Ph.D. degree in Electrical Engineering from the University of Texas at Dallas in 2003. In 2004 and 2005, he was a postdoctoral research associate in the Department of Electrical and Computer Engineering, University of Florida. Currently, he is an assistant professor in the Department of Electrical and Computer Engineering, University of Puerto Rico at Mayagüez. His research interests include architecture and protocols design for computer and communication networks, performance analysis, network security, and wireless communications. Jianfeng Wang received the B.E. and M.E. degrees in electrical engineering from Huazhong University of Science and Technology, China, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering from University of Florida in 2006. From January 2006 to July 2006, he was a research intern in wireless standards and technology group, Intel Corporation. In October 2006, he joined Philips Research North America as a senior member research staff in wireless communications and networking department. He is engaged in research and standardization on wireless networks with emphasis on medium access control (MAC). Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001, and the Best Paper Award in International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine) 2006. Currently, he serves as the Editor-in-Chief of Journal of Advances in Multimedia, and an Associate Editor for IEEE Transactions on Wireless Communications, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Vehicular Technology, and International Journal of Ad Hoc and Ubiquitous Computing. He is also a guest-editor for IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Cross-layer Optimized Wireless Multimedia Communications. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as a technical program committee member of over 30 conferences. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Best Paper Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor and got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been actively participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007). He is a senior member of the IEEE.  相似文献   

5.
We propose an innovative resource management scheme for TDMA based mobile ad hoc networks. Since communications between some important nodes in the network are more critical, they should be accepted by the network with high priority in terms of network resource usage and quality of service (QoS) support. In this scheme, we design a location-aware bandwidth pre-reservation mechanism, which takes advantage of each mobile node’s geographic location information to pre-reserve bandwidth for such high priority connections and thus greatly reduces potential scheduling conflicts for transmissions. In addition, an end-to-end bandwidth calculation and reservation algorithm is proposed to make use of the pre-reserved bandwidth. In this way, time slot collisions among different connections and in adjacent wireless links along a connection can be reduced so that more high priority connections can be accepted into the network without seriously hurting admissions of other connections. The salient feature of our scheme is the collaboration between the routing and MAC layer that results in the more efficient spatial reuse of limited resources, which demonstrates how cross-layer design leads to better performance in QoS support. Extensive simulations show that our scheme can successfully provide better communication quality to important nodes at a relatively low price. Finally, several design issues and future work are discussed. Xiang Chen received the B.E. and M.E. degrees in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 1997 and 2000, respectively. Afterwards, he worked as a MTS (member of technical staff) in Bell Laboratories, Beijing, China. He is currently working toward the Ph.D. degree in the department of Electrical and Computer Engineering at the University of Florida. His research is focused on protocol design and performance evaluation in wireless networks, including cellular networks, wireless LANs, and mobile ad hoc networks. He is a member of Tau Beta Pi and a student member of IEEE. Wei Liu received the BE and ME degrees in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998 and 2001, respectively. He is currently pursuing the P.hD. degree in the Department of Electrical and Computer Engineering, University of Florida, Gainesville, where he is a research assistant in the Wireless Networks Laboratory (WINET). His research interest includes QoS, secure and power efficient routing, and MAC protocols in mobile ad hoc networks and sensor networks. He is a student member of the IEEE. Hongqiang Zhai received the B.E. and M.E. degrees in electrical engineering from Tsinghua University, Beijing, China, in July 1999 and January 2002 respectively. He worked as a research intern in Bell Labs Research China from June 2001 to December 2001, and in Microsoft Research Asia from January 2002 to July 2002. Currently he is pursuing the Ph.D. degree in the Department of Electrical and Computer Engineering, University of Florida. He is a student member of IEEE. Yuguang Fang received a Ph.D. degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion to Associate Professor with tenure in August 2003 and to Full Professor in August 2005. He has published over 180 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEETransactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000).  相似文献   

6.
Quality of service (QoS) support for multimedia services in the IEEE 802.11 wireless LAN is an important issue for such WLANs to become a viable wireless access to the Internet. In this paper, we endeavor to propose a practical scheme to achieve this goal without changing the channel access mechanism. To this end, a novel call admission and rate control (CARC) scheme is proposed. The key idea of this scheme is to regulate the arriving traffic of the WLAN such that the network can work at an optimal point. We first show that the channel busyness ratio is a good indicator of the network status in the sense that it is easy to obtain and can accurately and timely represent channel utilization. Then we propose two algorithms based on the channel busyness ratio. The call admission control algorithm is used to regulate the admission of real-time or streaming traffic and the rate control algorithm to control the transmission rate of best effort traffic. As a result, the real-time or streaming traffic is supported with statistical QoS guarantees and the best effort traffic can fully utilize the residual channel capacity left by the real-time and streaming traffic. In addition, the rate control algorithm itself provides a solution that could be used above the media access mechanism to approach the maximal theoretical channel utilization. A comprehensive simulation study in ns-2 has verified the performance of our proposed CARC scheme, showing that the original 802.11 DCF protocol can statically support strict QoS requirements, such as those required by voice over IP or streaming video, and at the same time, achieve a high channel utilization. Hongqiang Zhai received the B.E. and M.E. degrees in electrical engineering from Tsinghua University, Beijing, China, in July 1999 and January 2002 respectively. He worked as a research intern in Bell Labs Research China from June 2001 to December 2001, and in Microsoft Research Asia from January 2002 to July 2002. Currently he is pursuing the PhD degree in the Department of Electrical and Computer Engineering, University of Florida. He is a student member of IEEE. Xiang Chen received the B.E. and M.E. degrees in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 1997 and 2000, respectively, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in 2005. He is currently a Senior Research Engineer at Motorola Labs, Arlington Heights, IL. His research interests include resource management, medium access control, and quality of service (QoS) in wireless networks. He is a Member of Tau Beta Pi and a student member of IEEE. Yuguang Fang received a Ph.D degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion with tenure in August 2003 and has been an Associate Professor since then. He has published over one hundred (100) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000).  相似文献   

7.
In wireless data networks such as the WAP systems, the cached data may be time-sensitive and strong consistency must be maintained (i.e., the data presented to the user at the WAP handset must be the same as that in the origin server). In this paper, we study the cached data access algorithms in such systems. Two caching algorithms are investigated. In Algorithm I, Pull-Each-Read, whenever a data access occurs, the client always asks the server whether the cached entry in the client is valid or not. In Algorithm II, Callback, the server always invalidates the cached entry in the client whenever an update occurs. Analytic models are proposed to evaluate the performance of these algorithms. Our studies show that Algorithm II outperforms Algorithm I if the data access rate is high and the access pattern is irregular. We also design an adaptive mechanism to effectively switch between the two algorithms to take advantages of both algorithms. We also apply the single-level cached data access algorithms for the multi-level cache hierarchy. Our study indicates that with appropriate arrangement, strongly consistent cached data access for wireless Internet (such as WAP) can be efficiently supported.Yuguang Fang received the B.S. and M.S. degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D degree from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D degree from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997.From 1987 to 1988, he held research and teaching positions in both Department of Mathematics and the Institute of Automation at Qufu Normal University. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. From May 2000 to July 2003, he was an Assistant Professor in the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he has been an Associate Professor since August 2003. His research interests span many areas including wireless networks, mobile computing, mobile communications, automatic control, and neural networks. He has published over ninety papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Development Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is listed in Marquis Whos Who in Science and Engineering, Whos Who in America and Whos Who in World.Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for ACM Wireless Networks, an Area Editor for ACM Mobile Computing and Communications Review, an Associate Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications: Wireless Communications Series and the feature editor for Scanning the Literature in IEEE Wireless Communications (formerly IEEE Personal Communications). He has also actively involved with many professional conferences such as ACM MobiCom02, ACM MobiCom01, IEEE INFOCOM04, INFOCOM03, INFOCOM00, INFOCOM98, IEEE WCNC02, WCNC00 (Technical Program Vice-Chair), WCNC99, and International Conference on Computer Communications and Networking (IC3N98) (Technical Program Vice-Chair).Yi-Bing Lin received his BSEE degree from National Cheng Kung University in 1983, and his Ph.D. degree in Computer Science from the University of Washington in 1990. From 1990 to 1995, he was with the Applied Research Area at Bell Communications Research (Bellcore), Morristown, NJ. In 1995, he was appointed as a professor of Department of Computer Science and Information Engineering (CSIE), National Chiao Tung University (NCTU). In 1996, he was appointed as Deputy Director of Microelectronics and Information Systems Research Center, NCTU. During 1997-1999, he was elected as Chairman of CSIE, NCTU. His current research interests include design and analysis of personal communications services network, mobile computing, distributed simulation, and performance modeling. Dr. Lin has published over 150 journal articles and more than 200 conference papers.Dr. Lin is a senior technical editor of IEEE Network, an editor of IEEE Trans. on Wireless Communications, an associate editor of IEEE Trans. on Vehicular Technology, an associate editor of IEEE Communications Survey and Tutorials, an editor of IEEE Personal Communications Magazine, an editor of Computer Networks, an area editor of ACM Mobile Computing and Communication Review, a columnist of ACM Simulation Digest, an editor of International Journal of Communications Systems, an editor of ACM/Baltzer Wireless Networks, an editor of Computer Simulation Modeling and Analysis, an editor of Journal of Information Science and Engineering, Program Chair for the 8th Workshop on Distributed and Parallel Simulation, General Chair for the 9th Workshop on Distributed and Parallel Simulation. Program Chair for the 2nd International Mobile Computing Conference, Guest Editor for the ACM/Baltzer MONET special issue on Personal Communications, a Guest Editor for IEEE Transactions on Computers special issue on Mobile Computing, a Guest Editor for IEEE Transactions on Computers special issue on Wireless Internet, and a Guest Editor for IEEE Communications Magazine special issue on Active, Programmable, and Mobile Code Networking. Lin is the author of the book Wireless and Mobile Network Architecture (co-author with Imrich Chlamtac; published by John Wiley & Sons). Lin received 1998, 2000 and 2002 Outstanding Research Awards from National Science Council, ROC, and 1998 Outstanding Youth Electrical Engineer Award from CIEE, ROC. He also received the NCTU Outstanding Teaching Award in 2002. Lin is an Adjunct Research Fellow of Academia Sinica, and is Chair Professor of Providence University. Lin serves as consultant of many telecommunications companies including FarEasTone and Chung Hwa Telecom. Lin is an IEEE Fellow.  相似文献   

8.
This paper presents an analytical model for evaluating the statistical multiplexing effect, admission region, and contention window design in multiclass wireless local area networks (WLANs). We consider distributed medium access control (MAC) which provisions service differentiation by assigning different contention windows to different classes. Mobile nodes belonging to different classes may have heterogeneous traffic arrival processes with different quality of service (QoS) requirements. With bursty input traffic, e.g. on/off sources, our analysis shows that the WLAN admission region under the QoS constraint can be significantly improved, when the statistical multiplexing effect is taken into account. We also analyze the MAC resource sharing between the short-range dependent (SRD) on/off sources and the long-range dependent (LRD) fractional Brownian motion (FBM) traffic, where the impact of the Hurst parameter on the admission region is investigated. Moveover, we demonstrate that the proper selection of contention windows plays an important role in improving the WLAN’s QoS capability, while the optimal contention window for each class and the maximum admission region can be jointly solved in our analytical model. The analysis accuracy and the resource utilization improvement from statistical multiplexing gain and contention window optimization are demonstrated by extensive numerical results. Yu Cheng received the B.E. and M.E. degrees in Electrical Engineering from Tsinghua University, Beijing, China, in 1995 and 1998, respectively, and the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada, in 2003. From September 2004 to July 2006, he was a postdoctoral research fellow in the Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada. Since August 2006, he has been with the Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA, as an Assistant Professor. His research interests include service and application oriented networking, autonomic network management, Internet performance analysis, resource allocation, wireless networks, and wireless/wireline interworking. He received a Postdoctoral Fellowship Award from the Natural Sciences and Engineering Research Council of Canada (NSERC) in 2004. Xinhua Ling received the B. Eng. degree in Radio Engineering from Southeast University, Nanjing, China in 1993 and the M. Eng. degree in Electrical Engineering from the National University of Singapore, Singapore in 2001. He is currently pursuing the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Waterloo, Ontario, Canada. From 1993 to 1998, he was an R&D Engineer in Beijing Institute of Radio Measurement, China. From February 2001 to September 2002, he was with the Centre for Wireless Communications (currently Institute for Infocom Research), Singapore, as a Senior R&D Engineer, developing the protocol stack for UE in the UMTS system. His general research interests are in the areas of cellular, WLAN, WPAN, mesh and ad hoc networks and their internetworking, focusing on protocol design and performance analysis. Lin X. Cai received the B.Sc. degree in computer science from Nanjing University of Science and Technology, Nanjing, China, in 1996 and the MASc. degree in electrical and computer engineering from the University of Waterloo, Waterloo, Canada, in 2005. She is currently working toward the Ph.D. degree in the same field at the University of Waterloo. Her current research interests include network performance analysis and protocol design for multimedia applications over wireless networks. Wei Song received the B.S. degree in electrical engineering from Hebei University, China, in 1998 and the M.S. degree in computer science from Beijing University of Posts and Telecommunications, China, in 2001. She is currently working toward the Ph.D. degree at the Department of Electrical and Computer Engineering, University of Waterloo, Canada. Her current research interests include resource allocation and quality-of-service (QoS) provisioning for the integrated cellular networks and wireless local area networks (WLANs). Weihua Zhuang received the Ph.D. degree in electrical engineering from the University of New Brunswick, Canada. Since October 1993, she has been with the Department of Electrical and Computer Engineering, University of Waterloo, Canada, where she is a Professor. Dr. Zhuang is a co-author of the textbook Wireless Communications and Networking (Prentice Hall, 2003). Her current research interests include multimedia wireless communications, wireless networks, and radio positioning. She received the Outstanding Performance Award in 2005 and 2006 from the University of Waterloo and the Premier’s Research Excellence Award in 2001 from the Ontario Government for demonstrated excellence of scientific and academic contributions. She is the Editor-in-Chief of IEEE Transactions on Vehicular Technology and an Editor of IEEE Transactions on Wireless Communications. Xuemin (Sherman) Shen received the B.Sc.(1982) degree from Dalian Maritime University (China) and the M.Sc. (1987) and Ph.D. degrees (1990) from Rutgers University, New Jersey (USA), all in electrical engineering. He is a Professor and the Associate Chair for Graduate Studies, Department of Electrical and Computer Engineering, University of Waterloo, Canada. His research focuses on mobility and resource management in interconnected wireless/wired networks, UWB wireless communications systems, wireless security, and ad hoc and sensor networks. He is a co-author of three books, and has published more than 300 papers and book chapters in wireless communications and networks, control and filtering. Dr. Shen serves as the Technical Program Committee Chair for IEEE Globecom’07, General Co-Chair for Chinacom’07 and QShine’06, the Founding Chair for IEEE Communications Society Technical Committee on P2P Communications and Networking. He also serves as a Founding Area Editor for IEEE Transactions on Wireless Communications; Associate Editor for IEEE Transactions on Vehicular Technology; KICS/IEEE Journal of Communications and Networks; Computer Networks (Elsevier); ACM/Wireless Networks; and Wireless Communications and Mobile Computing (John Wiley), etc. He has also served as Guest Editor for IEEE JSAC, IEEE Wireless Communications, and IEEE Communications Magazine. Dr. Shen received the Excellent Graduate Supervision Award in 2006, and the Outstanding Performance Award in 2004 from the University of Waterloo, the Premier’s Research Excellence Award in 2003 from the Province of Ontario, Canada, and the Distinguished Performance Award in 2002 from the Faculty of Engineering, University of Waterloo. Dr. Shen is a registered Professional Engineer of Ontario, Canada. Alberto Leon-Garcia received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Southern California, in 1973, 1974, and 1976 respectively. He is a Full Professor in the Department of Electrical and Computer Engineering, University of Toronto, ON, Canada, and he currently holds the Nortel Institute Chair in Network Architecture and Services. In 1999 he became an IEEE fellow for “For contributions to multiplexing and switching of integrated services traffic”. Dr. Leon-Garcia was Editor for Voice/Data Networks for the IEEE Transactions on Communications from 1983 to 1988 and Editor for the IEEE Information Theory Newsletter from 1982 to 1984. He was Guest Editor of the September 1986 Special Issue on Performance Evaluation of Communications Networks of the IEEE Selected Areas on Communications. He is also author of the textbooks Probability and Random Processes for Electrical Engineering (Reading, MA: Addison-Wesley), and Communication Networks: Fundamental Concepts and Key Architectures (McGraw-Hill), co-authored with Dr. Indra Widjaja.  相似文献   

9.
An important objective of next-generation wireless networks is to provide quality of service (QoS) guarantees. This requires a simple and efficient wireless channel model that can easily translate into connection-level QoS measures such as data rate, delay and delay-violation probability. To achieve this, in Wu and Negi (IEEE Trans. on Wireless Communications 2(4) (2003) 630–643), we developed a link-layer channel model termed effective capacity, for the setting of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels with negligible propagation delay. In this paper, we apply the effective capacity technique to deriving QoS measures for more general situations, namely, (1) networks with multiple wireless links, (2) variable-bit-rate sources, (3) packetized traffic, and (4) wireless channels with non-negligible propagation delay. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 20 conferences such as IEEE INFOCOM'05, IEEE ICC'05, IEEE WCNC'05, and IEEE Globecom'04. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Assistant Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

10.
Multiconstrained QoS multipath routing in wireless sensor networks   总被引:2,自引:0,他引:2  
Sensor nodes are densely deployed to accomplish various applications because of the inexpensive cost and small size. Depending on different applications, the traffic in the wireless sensor networks may be mixed with time-sensitive packets and reliability-demanding packets. Therefore, QoS routing is an important issue in wireless sensor networks. Our goal is to provide soft-QoS to different packets as path information is not readily available in wireless networks. In this paper, we utilize the multiple paths between the source and sink pairs for QoS provisioning. Unlike E2E QoS schemes, soft-QoS mapped into links on a path is provided based on local link state information. By the estimation and approximation of path quality, traditional NP-complete QoS problem can be transformed to a modest problem. The idea is to formulate the optimization problem as a probabilistic programming, then based on some approximation technique, we convert it into a deterministic linear programming, which is much easier and convenient to solve. More importantly, the resulting solution is also one to the original probabilistic programming. Simulation results demonstrate the effectiveness of our approach. This work was supported in part by the U.S. National Science Foundation under grant DBI-0529012, the National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and the Office of Naval Research under Young Investigator Award N000140210464. Xiaoxia Huang received her BS and MS in the Electrical Engineering from Huazhong University of Science and Technology in 2000 and 2002, respectively. She is completing her Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida. Her research interests include mobile computing, QoS and routing in wireless ad hoc networks and wireless sensor networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been activitely participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007).  相似文献   

11.
In this paper we study connection admission control (CAC) in IEEE 802.11-based ESS mesh networks. An analytical model is developed for studying the effects of CAC on mesh network capacity. A distributed CAC scheme is proposed, which incorporates load balancing when selecting a mesh path for new connections. Our results show that connection level performance, including both average number of connections and connection blocking probability, can be greatly improved using the proposed mechanism compared to other admission control schemes. Dongmei Zhao received the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless networks. Dr. Zhao is a member of the IEEE. Jun Zou received his B. Eng. and M. Eng. Degrees from Tianjin University, China in 1999 and 2002, respectively. He worked at Siemens Communication Networks Ltd., Beijing from 2002 to 2004. Currently, he is a PhD. student at McMaster University, Canada. His research interests include wireless networking, routing protocols, architecture of next generation networks and network security. Terence D. Todd received the B.A.Sc., M.A.Sc. and Ph.D. degrees in Electrical Engineering from the University of Waterloo, Waterloo, Ontario, Canada. While at Waterloo Dr. Todd spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). He is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada. At McMaster he has been the Principal Investigator on a number of projects in the optical networks and wireless networking areas. Professor Todd spent 1991 on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent January-December 1998 on research leave at The Olivetti and Oracle Research Laboratory in Cambridge, England. While at ORL he worked on the piconet project which was an early embedded wireless network testbed. Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. Dr. Todd is a past Editor of the IEEE/ACM Transactions on Networking and currently holds the NSERC/RIM/CITO Chair on Pico-Cellular Wireless Internet Access Networks Dr. Todd is a Professional Engineer in the province of Ontario and a member of the IEEE.  相似文献   

12.
Future wired-wireless multimedia networks require diverse quality-of-service (QoS) support. To this end, it is essential to rely on QoS metrics pertinent to wireless links. In this paper, we develop a cross-layer model for adaptive wireless links, which enables derivation of the desired QoS metrics analytically from the typical wireless parameters across the hardware-radio layer, the physical layer and the data link layer. We illustrate the advantages of our model: generality, simplicity, scalability and backward compatibility. Finally, we outline its applications to power control, TCP, UDP and bandwidth scheduling in wireless networks. The work by Q. Liu and G. B. Giannakis are prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The work by S. Zhou is supported by UConn Research Foundation internal grant 445157. Qingwen Liu (S’04) received the B.S. degree in electrical engineering and information science in 2001, from the University of Science and Technology of China (USTC). He received the M.S. degree in electrical engineering in 2003, from the University of Minnesota (UMN). He currently pursues his Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Minnesota (UMN). His research interests lie in the areas of communications, signal processing, and networking, with emphasis on cross-layer analysis and design, quality of service support for multimedia applications over wired-wireless networks, and resource allocation. Shengli Zhou (M’03) received the B.S. degree in 1995 and the M.Sc. degree in 1998, from the University of Science and Technology of China (USTC), both in electrical engineering and information science. He received his Ph.D. degree in electrical engineering from the University of Minnesota, 2002, and joined the Department of Electrical and Computer Engineering at the University of Connecticut, 2003. His research interests lie in the areas of communications and signal processing, including channel estimation and equalization, multi-user and multi-carrier communications, space time coding, adaptive modulation, and cross-layer designs. He serves as an associate editor for IEEE Transactions on Wireless Communications since Feb. 2005. G. B. Giannakis (Fellow’97) received his Diploma in Electrical Engineering from the National Technical University of Athens, Greece, 1981. From September 1982 to July 1986 he was with the University of Southern California (USC), where he received his MSc. in Electrical Engineering, 1983, MSc. in Mathematics, 1986, and Ph.D. in Electrical Engineering, 1986. After lecturing for one year at USC, he joined the University of Virginia in 1987, where he became a professor of Electrical Engineering in 1997. Since 1999 he has been a professor with the Department of Electrical and Computer Engineering at the University of Minnesota, where he now holds an ADC Chair in Wireless Telecommunications. His general interests span the areas of communications and signal processing, estimation and detection theory, time-series analysis, and system identification -- subjects on which he has published more than 200 journal papers, 350 conference papers and two edited books. Current research focuses on transmitter and receiver diversity techniques for single- and multi-user fading communication channels, complex-field and space-time coding, multicarrier, ultra-wide band wireless communication systems, cross-layer designs and sensor networks. G. B. Giannakis is the (co-) recipient of six paper awards from the IEEE Signal Processing (SP) and Communications Societies (1992, 1998, 2000, 2001, 2003, 2004). He also received the SP Society’s Technical Achievement Award in 2000. He served as Editor in Chief for the IEEE SP Letters, as Associate Editor for the IEEE Trans. on Signal Proc. and the IEEE SP Letters, as secretary of the SP Conference Board, as member of the SP Publications Board, as member and vice-chair of the Statistical Signal and Array Processing Technical Committee, as chair of the SP for Communications Technical Committee and as a member of the IEEE Fellows Election Committee. He has also served as a member of the IEEE-SP Society’s Board of Governors, the Editorial Board for the Proceedings of the IEEE and the steering committee of the IEEE Trans. on Wireless Communications.  相似文献   

13.
In this paper, we investigate the routing optimization problem in wireless mesh networks. While existing works usually assume static and known traffic demand, we emphasize that the actual traffic is time-varying and difficult to measure. In light of this, we alternatively pursue a stochastic optimization framework where the expected network utility is maximized. For multi-path routing scenario, we propose a stochastic programming approach which requires no priori knowledge on the probabilistic distribution of the traffic. For the single-path routing counterpart, we develop a learning-based algorithm which provably converges to the global optimum solution asymptotically.
Yuguang FangEmail:

Yang Song   received his B.E. and M.E. degrees in Electrical Engineering from Dalian University of Technology, Dalian, China, and University of Hawaii at Manoa, Honolulu, U.S.A., in July 2004 and August 2006, respectively. Since September 2006, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are wireless network, game theory, optimization and mechanism design. He is a student member of IEEE a member of Game Theory Society. Chi Zhang   received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yuguang Fang   received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009 and a Changjiang Scholar Chair Professorship with National Key Laboratory of Integrated Services Networks, Xidian University, China, from 2008 to 2011. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is the recipient of the Best Paper Award in IEEE International Conference on Network Protocols (ICNP) in 2006 and the recipient of the IEEE TCGN Best Paper Award in the IEEE High-Speed Networks Symposium, IEEE Globecom in 2002. Dr. Fang is also active in professional activities. He is a Fellow of IEEE and a member of ACM. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He has been actively participating in professional conference organizations such as serving as the Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2009).   相似文献   

14.
IEEE 802.11 Wireless LAN (WLAN) has become a prevailing solution for broadband wireless Internet access while the Transport Control Protocol (TCP) is the dominant transport-layer protocol in the Internet. Therefore, it is critical to have a good understanding of the TCP dynamics over WLANs. In this paper, we conduct rigorous and comprehensive modeling and analysis of the TCP performance over the emerging 802.11e WLANs, or more specifically, the 802.11e Enhanced Distributed Channel Access (EDCA) WLANs. We investigate the effects of minimum contention window sizes and transmission opportunity (TXOP) limits (of both the AP and stations) on the aggregate TCP throughput via analytical and simulation studies. We show that the best aggregate TCP throughput performance can be achieved via AP’s contention-free access for downlink packet transmissions and the TXOP mechanism. We also study the effects of some simplifying assumptions used in our analytical model, and simulation results show that our model is reasonably accurate, particularly, when the wireline delay is small and/or the packet loss rate is low.
Daji QiaoEmail:

Jeonggyun Yu   received his B.E. degree in School of Electronic Engineering from Korea University, Seoul, Korea in 2002. He is currently working toward his Ph.D. in the School of Electrical Engineering at Seoul National University (SNU), Seoul, Korea. His research interests include QoS support, algorithm development, performance evaluation for wireless networks, in particular, IEEE 802.11 wireless local-area networks (WLANs). He is a student member of IEEE. Sunghyun Choi   is currently an associate professor at the School of Electrical Engineering, Seoul National University (SNU), Seoul, Korea. Before joining SNU in September 2002, he was with Philips Research USA, Briarcliff Manor, New York, USA as a Senior Member Research Staff and a project leader for three years. He received his B.S. (summa cum laude) and M.S. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992 and 1994, respectively, and received Ph.D. at the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor in September, 1999. His current research interests are in the area of wireless/ mobile networks with emphasis on wireless LAN/MAN/PAN, next-generation mobile networks, mesh networks, cognitive radios, resource management, data link layer protocols, and cross-layer approaches. He authored/coauthored over 120 technical papers and book chapters in the areas of wireless/mobile networks and communications. He has co-authored (with B. G. Lee) a book “Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi,” Artech House, 2008. He holds 15 US patents, nine European patents, and seven Korea patents, and has tens of patents pending. He has served as a General Co-Chair of COMSWARE 2008, and a Technical Program Committee Co-Chair of ACM Multimedia 2007, IEEE WoWMoM 2007 and IEEE/Create-Net COMSWARE 2007. He was a Co-Chair of Cross-Layer Designs and Protocols Symposium in IWCMC 2006, 2007, and 2008, the workshop co-chair of WILLOPAN 2006, the General Chair of ACM WMASH 2005, and a Technical Program Co-Chair for ACM WMASH 2004. He has also served on program and organization committees of numerous leading wireless and networking conferences including IEEE INFOCOM, IEEE SECON, IEEE MASS, and IEEE WoWMoM. He is also serving on the editorial boards of IEEE Transactions on Mobile Computing, ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), and Journal of Communications and Networks (JCN). He is serving and has served as a guest editor for IEEE Journal on Selected Areas in Communications (JSAC), IEEE Wireless Communications, Pervasive and Mobile Computing (PMC), ACM Wireless Networks (WINET), Wireless Personal Communications (WPC), and Wireless Communications and Mobile Computing (WCMC). He gave a tutorial on IEEE 802.11 in ACM MobiCom 2004 and IEEE ICC 2005. Since year 2000, he has been a voting member of IEEE 802.11 WLAN Working Group. He has received a number of awards including the Young Scientist Award (awarded by the President of Korea) in 2008; IEEK/IEEE Joint Award for Young IT Engineer of the Year 2007 in 2007; the Outstanding Research Award in 2008 and the Best Teaching Award in 2006 both from the College of Engineering, Seoul National University; the Best Paper Award from IEEE WoWMoM 2008; and Recognition of Service Award in 2005 and 2007 from ACM. Dr. Choi was a recipient of the Korea Foundation for Advanced Studies (KFAS) Scholarship and the Korean Government Overseas Scholarship during 1997–1999 and 1994–1997, respectively. He is a senior member of IEEE, and a member of ACM, KICS, IEEK, KIISE. Daji Qiao   is currently an assistant professor in the Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa. He received his Ph.D. degree in Electrical Engineering-Systems from The University of Michigan, Ann Arbor, Michigan, in February 2004. His current research interests include modeling, analysis and protocol/algorithm design for various types of wireless/mobile networks, including IEEE 802.11 Wireless LANs, mesh networks, and sensor networks. He is a member of IEEE and ACM.   相似文献   

15.
Cooperative-diversity slotted ALOHA   总被引:1,自引:0,他引:1  
We propose a cooperative-diversity technique for ad hoc networks based on the decode-and-forward relaying strategy. We develop a MAC protocol based on slotted ALOHA that allows neighbors of a transmitter to act as relays and forward a packet toward its final destination when the transmission to the intended recipient fails. The proposed technique provides additional robustness against fading, packet collisions and radio mobility. Network simulations confirm that under heavy traffic conditions, in which every radio always has packets to send, the proposed cooperative-diversity slotted-ALOHA protocol can provide a higher one-hop and end-to-end throughput than the standard slotted-ALOHA protocol can. A similar advantage in end-to-end delay can be obtained when the traffic is light. As a result, the proposed cooperative-diversity ALOHA protocol can be used to improve these measures of Quality of Service (QoS) in ad hoc wireless networks. John M. Shea (S’92–M’99) received the B.S. (with highest honors) in Computer Engineering from Clemson University in 1993 and the M.S. and Ph.D. degrees in electrical engineering from Clemson University in 1995 and 1998, respectively. Dr. Shea is currently an Associate Professor of electrical and computer engineering at the University of Florida. Prior to that, he was an Assistant Professor at the University of Florida from July 1999 to August 2005 and a post-doctoral research fellow at Clemson University from January 1999 to August 1999. He was a research assistant in the Wireless Communications Program at Clemson University from 1993 to 1998. He is currently engaged in research on wireless communications with emphasis on error-control coding, cross-layer protocol design, cooperative diversity techniques, and hybrid ARQ. Dr. Shea was selected as a Finalist for the 2004 Eta Kappa Nu Outstanding Young Electrical Engineer Award. He received the Ellersick Award from the IEEE Communications Society in 1996. Dr. Shea was a National Science Foundation Fellow from 1994 to 1998. He is an Associate Editor for the IEEE Transactions on Vehicular Technology. Tan F. Wong received the B.Sc. degree (1st class honors) in electronic engineering from the Chinese University of Hong Kong in 1991, and the M.S.E.E. and Ph.D. degrees in electrical engineering from Purdue University in 1992 and 1997, respectively. He was a research engineer working on the high speed wireless networks project in the Department of Electronics at Macquarie University, Sydney, Australia. He also served as a post-doctoral research associate in the School of Electrical and Computer Engineering at Purdue University. Since August 1998 he has been with the University of Florida, where he is currently an associate professor of electrical and computer engineering. He serves as Editor for Wideband and Multiple Access Wireless Systems for the IEEE Transactions on Communications and as the Editor for the IEEE Transactions on Vehicular Technology.  相似文献   

16.
This paper describes research towards a system for locating wireless nodes in a home environment requiring merely a single access point. The only sensor reading used for the location estimation is the received signal strength indication (RSSI) as given by an RF interface, e.g., Wi-Fi. Wireless signal strength maps for the positioning filter are obtained by a two-step parametric and measurement driven ray-tracing approach to account for absorption and reflection characteristics of various obstacles. Location estimates are then computed using Bayesian filtering on sample sets derived by Monte Carlo sampling. We outline the research leading to the system and provide location performance metrics using trace-driven simulations and real-life experiments. Our results and real-life walk-troughs indicate that RSSI readings from a single access point in an indoor environment are sufficient to derive good location estimates of users with sub-room precision. Gergely V. Záruba is an Assistant Professor of Computer Science and Engineering at The University of Texas at Arlington (CSE@UTA). He has received the Ph.D. degree in Computer Science from The University of Texas at Dallas in 2001, and the M.S. degree in Computer Engineering from the Technical University of Budapest, Department of Telecommunications and Telematics, in 1997. Dr. Záruba’s research interests include wireless networks, algorithms, and protocols, performance evaluation, current wireless and assistive technologies. He has served on many organizing and technical program committees for leading conferences and has guest edited journals. He is a member of the IEEE and its Communications Society. Manfred Huber is an Assistant Professor of Computer Science and Engineering at The University of Texas at Arlington (CSE@UTA). He received his M.S. and Ph.D. degrees in Computer Science from the University of Massachusetts, Amherst in 1993 and 2000, respectively. He obtained his “Vordiplom” from the University of Karlsruhe, Germany in 1990. Dr. Huber is the co-director of the Robotics and of the Learning and Planning Laboratory at CSE@UTA. His research interests are in reinforcement learning, autonomous robots, cognitive systems, and adaptive human-computer interfaces. He is a member of the IEEE, the ACM, and the AAAI. Farhad A. Kamangar is a Professor of Computer Science and Engineering at The University of Texas at Arlington (CSE@UTA). He has received the Ph.D. and M.S. degrees in Electrical Engineering from The University of Texas at Arlington in 1980 and 1977 respectively. He received his B.S. degree from the University of Teheran, Iran in 1975. Dr. Kamangar’s research interests include image processing, robotics, signal processing, machine intelligence and computer graphics. He is a member of the IEEE and the ACM. Imrich Chlamtac is the President of CREATE-NET and the Bruno Kessler Professor at the University of Trento, Italy and has held various honorary and chaired professorships in USA and Europe including the Distinguished Chair in Telecommunications Professorship at the University of Texas at Dallas, Sackler Professorship at Tel Aviv University and University Professorship at the Technical University of Budapest. In the past he was with Technion and UMass, Amherst, DEC Research. Dr. Imrich Chlamtac has made significant contribution to various networking technologies as scientist, educator and entrepreneur. Dr. Chlamtac is the recipient of multiple awards and recognitions including Fellow of the IEEE, Fellow of the ACM, Fulbright Scholar, the ACM Award for Outstanding Contributions to Research on Mobility and the IEEE Award for Outstanding Technical Contributions to Wireless Personal Communications. Dr. Chlamtac published close to four hundred refereed journal, book, and conference articles and is listed among ISI’s Highly Cited Researchers in Computer Science. Dr. Chlamtac is the co-author of four books, including the first book on Local Area Networks (1980) and the Amazon.com best seller and IEEE Editor’s Choice Wireless and Mobile Network Architectures, published by John Wiley and Sons (2000). Dr. Chlamtac has widely contributed to the scientific community as founder and Chair of ACM Sigmobile, founder and steering committee chair of some of the lead conferences in networking, including ACM Mobicom, IEEE/SPIE/ACM OptiComm, CreateNet Mobiquitous, CreateNet WiOpt, IEEE/CreateNet Broadnet, IEEE/CreateNet Tridentcom and IEEE/CreateNet Securecomm conferences. Dr. Chlamtac also serves as the founding Editor in Chief of the ACM/URSI/Springer Wireless Networks (WINET), the ACM/Springer Journal on Special Topics in Mobile Networks and Applications (MONET).  相似文献   

17.
We propose the physical-layer (PHY) air interface solutions for downlink and uplink transmissions in broadband high-speed wireless cellular systems. A system based on low-density parity-check (LDPC) coded multiple-input-multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) time-division multiple-accessing (TDMA) (with scheduling) is proposed for downlink transmission; and a system based on orthogonal space-time block coded (STBC) multi-carrier code-division multiple-accessing (MC-CDMA) is proposed for uplink transmission. The proposed scheme can support ∼100 Mbps peak rate over 25 MHz bandwidth downlink channels and ∼30 Mbps sum rate of multiple users over 25 MHz uplink channels. Moreover, the proposed solutions provide excellent performance and reasonable complexity for mobile station and for base station. Ben Lu received the B.S. and M.S. degrees in electrical engineering from Southeast University, Nanjing, China, in 1994 and 1997; the Ph.D. degree from Texas A & M University in 2002. From 1994 to 1997, he was a Research Assistant with National Mobile Communications Research Laboratory at Southeast University, China. From 1997 to 1998, he was with the CDMA Research Department of Zhongxing Telecommunication Equipment Co., Shanghai, China. From 2002 to 2004, he worked for the project of high-speed wireless packet data transmission (4G prototype) at NEC Laboratories America, Princeton, New Jersey. He is now with Silicon Laboratories. His research interests include the signal processing and error-control coding for mobile and wireless communication systems. Xiaodong Wang received the B.S. degree in Electrical Engineering and Applied Mathematics (with the highest honor) from Shanghai Jiao Tong University, Shanghai, China, in 1992; the M.S. degree in Electrical and Computer Engineering from Purdue University in 1995; and the Ph.D degree in Electrical Engineering from Princeton University in 1998. From July 1998 to December 2001, he was an Assistant Professor in the Department of Electrical Engineering, Texas A&M University. In January 2002, he joined the faculty of the Department of Electrical Engineering, Columbia University. Dr. Wang’s research interests fall in the general areas of computing, signal processing and communications. He has worked in the areas of digital communications, digital signal processing, parallel and distributed computing, nanoelectronics and bioinformatics, and has published extensively in these areas. Among his publications is a recent book entitled “Wireless Communication Systems: Advanced Techniques for Signal Reception”, published by Prentice Hall, Upper Saddle River, in 2003. His current research interests include wireless communications, Monte Carlo-based statistical signal processing, and genomic signal processing. Dr. Wang received the 1999 NSF CAREER Award, and the 2001 IEEE Communications Society and Information Theory Society Joint Paper Award. He currently serves as an Associate Editor for the IEEE Transactions on Communications, the IEEE Transactions on Wireless Communications, the IEEE Transactions on Signal Processing, and the IEEE Transactions on Information Theory. Mohammad Madihian (S’78-M’83-SM’88-F’98) received his Ph.D in electronic engineering from Shizuoka University, Hamamatsu, Japan, in 1983. He is presently the Chief Patent Officer and Department Head, NEC Laboratories America, Inc., Princeton, New Jersey, where he conducts Microwave as well as PHY/MAC layer signal processing activities for high-speed wireless networks and personal communications applications. He holds 35 Japan/US patents and has authored/co-authored more than 130 technical publications including 25 invited talks. He has received 8 NEC Distinguished R&D Achievement Awards, the 1988 IEEE MTT-S Best Paper Microwave Prize, and 1998 IEEE Fellow Award. He has served as Guest Editor to the IEEE Journal of Solid-State Circuits, Japan IEICE Transactions on Electronics, and IEEE Transactions on Microwave Theory and Techniques. He is currently serving on the IEEE Speaker’s Bureau, IEEE Compound Semiconductor IC Symposium Executive Committee, IEEE Radio and Wireless Symposium Executive Committee, IEEE International Microwave Symposium Technical Program Committee, IEEE MTT-6 Subcommittee, IEEE MTT Editorial Board, and Technical Program Committee of International Conference on Solid State Devices and Materials. Dr. Madihian is an Adjunct Professor at Electrical and Computer Engineering Department, Drexel University, Philadelphia, Pennsylvania.  相似文献   

18.
This paper explores analytical Radio Resource Management models where the relationship between users and services is mapped through utility functions. Compared to other applications of these models to networking, we focus in particular on specific aspects of multimedia systems with adaptive traffic, and propose a novel framework for describing and investigating dynamic allocation of resources in wireless networks. In doing so, we also consider economic aspects, such as the financial needs of the provider and the users’ reaction to prices. As an example of how our analytical tool can be used, in this paper we compare different classes of RRM strategies, e.g., Best Effort vs. Guaranteed Performance, for which we explore the relationships between Radio Resource Allocation, pricing, provider’s revenue, network capacity and users’ satisfaction. Finally, we present a discussion about Economic Admission Control, which can be applied in Best Effort scenarios to further improve the performance. Part of this work has been presented at the conference ACM/IEEE MSWiM 2004, Venice (Italy). Leonardo Badia received a Laurea degree (with honors) in electrical engineering and a Ph.D. in information engineering from the University of Ferrara, Italy, in 2000 and 2004, respectively. He was a Research Fellow at the University of Ferrara from 2001 to 2006. During these years, he also had collaborations with the University of Padova, Italy, and Wireless@KTH, Royal Institute of Technology, Stockholm, Sweden. In 2006, he joined the “Institutions Markets Technologies” (IMT) Institute for Advanced Studies, Lucca, Italy, where he is currently a Research Fellow. His research interests include wireless ad hoc and mesh networks, analysis of transmission protocols, optimization tools and economic models applied to radio resource management. Michele Zorzi received a Laurea degree and a Ph.D. in electrical engineering from the University of Padova in 1990 and 1994, respectively. During academic year 1992–1993, he was on leave at UCSD, attending graduate courses and doing research on multiple access in mobile radio networks. In 1993 he joined the faculty of the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy. After spending three years with the Center for Wireless Communications at UCSD, in 1998 he joined the School of Engineering of the University of Ferrara, Italy, where he became a professor in 2000. Since November 2003 he has been on the faculty at the Information Engineering Department of the University of Padova. His present research interests include performance evaluation in mobile communications systems, random access in mobile radio networks, ad hoc and sensor networks, energy constrained communications protocols, and broadband wireless access. He was Editor-In-Chief of IEEE Wireless Communications, 2003–2005, and currently serves on the Editorial Boards of IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, Wiley’s Journal of Wireless Communications and Mobile Computing, and ACM/URSI/Kluwer Journal of Wireless Networks, and on the Steering Committee of the IEEE Transactions on Mobile Computing. He has also been a Guest Editor of special issues in IEEE Personal Communications (Energy Management in Personal Communications Systems) and IEEE Journal on Selected Areas in Communications (Multimedia Network Radios).  相似文献   

19.
This paper studies scheduling algorithms for an infra-structure based wireless local area network with multiple simultaneous transmission channels. A reservation-based medium access control protocol is assumed where the base station (BS) allocates transmission slots to the system mobile stations based on their requests. Each station is assumed to have a tunable transmitter and tunable receiver. For this network architecture, the scheduling algorithms can be classified into two categories: contiguous and non-contiguous, depending on whether slots are allocated contiguously to the mobile stations. The main objective of the scheduling algorithms is to achieve high channel utility while having low time complexity. In this paper, we propose three scheduling algorithms termed contiguous sorted sequential allocation (CSSA), non-contiguous round robin allocation (NCRRA) and non-contiguous sorted round robin allocation (NCSRRA). Among these, CSSA schedules each station in contiguous mode, while other two algorithms, NCRRA and NCSRRA, schedule stations in non-contiguous mode. Through extensive analysis and simulation, the results demonstrate that the CSSA with only slightly increased complexity can achieve much higher channel utility when compared to the existing contiguous scheduling algorithms. The NCRRA and NCSRRA on the other hand, results in significantly lower complexity, while still achieving the optimal channel utility compared to existing non-contiguous scheduling algorithms. Chonggang Wang received a B.Sc. (honors) degree from Northwestern Polytechnic University, Xi'an, China, in 1996, and M.S. and Ph. D. degrees in communication and information system from University of Electrical Science and Technology in China, Chengdu, China, and Beijing University of Posts and Telecommunications, Beijing, China, in 1999 and 2002, respectively. From September 2002 to November 2003 he has been with the Hong Kong University of Science and Technology, Hong Kong, where he is an associate researcher in the Department of Computer Science. He is now a post-doctoral research fellow in University of Arkansas, Arkansas. His current research interests are in wireless networks with QoS guarantee, sensor networks, peer-to-peer and overlay networks. Bo Li received the B.S. (summa cum laude) and M.S. degrees in the Computer Science from Tsinghua University, Beijing, P. R. China, in 1987 and 1989, respectively, and the Ph.D. degree in the Electrical and Computer Engineering from University of Massachusetts at Amherst in 1993. Between 1994 and 1996, he worked on high performance routers and ATM switches in IBM Networking System Division, Research Triangle Park, North Carolina. Since January 1996, he has been with Computer Science Department, the Hong Kong University of Science and Technology, where he is an associated professor and co-director for the ATM/IP cooperate research center, a government sponsored research center. Since 1999, he has also held an adjunct researcher position at the Microsoft Research Asia (MSRA), Beijing, China. His current research interests include wireless mobile networking supporting multimedia, video multicast and all optical networks using WDM, in which he has published over 150 technical papers in referred journals and conference proceedings. He has been an editor or a guest editor for 16 journals, and involved in the organization of about 40 conferences. He was the Co-TPC Chair for IEEE Infocom'2004. He is a member of ACM and a senior member of IEEE. Krishna M. Sivalingam (ACM ‘93) is an Associate Professor in the Dept. of CSEE at University of Maryland, Baltimore County. Previously, he was with the School of EECS at Washington State University, Pullman from 1997 until 2002; and with the University of North Carolina Greensboro from 1994 until 1997. He has also conducted research at Lucent Technologies' Bell Labs in Murray Hill, NJ, and at AT&T Labs in Whippany, NJ. He received his M.S. and Ph.D. degrees in Computer Science from State University of New York at Buffalo in 1990 and 1994 respectively; and his B.E. degree in Computer Science and Engineering in 1988 from Anna University, Chennai (Madras), India. While at SUNY Buffalo, he was a Presidential Fellow from 1988 to 1991. His research interests include wireless networks, optical wavelength division multiplexed networks, and performance evaluation. He holds three patents in wireless networks and has published several research articles including more than twenty-five journal publications. He has published an edited book on Wireless Sensor Networks in 2004 and on optical networks in 2000 and in 2004. He is a member of the Editorial Board for ACM Wireless Networks Journal, IEEE Transactions on Mobile Computing, and KICS Journal of Computer Networks. He has served as a Guest Co-Editor for special issues of ACM MONET on “Wireless Sensor Networks” in 2003 and 2004 and an issue of IEEE Journal on Selected Areas in Communications on optical WDM networks (2000). He is co-recipient of the Best Paper Award at the IEEE International Conference on Networks 2000 held in Singapore. His work has been supported by several sources including AFOSR, NSF, Cisco, Intel and Laboratory for Telecommunication Sciences. He is a member of the Editorial Board for ACM Wireless Networks Journal, IEEE Transactions on Mobile Computing, and KICS Journal of Computer Networks. He is serving as Technical Program Co-Chair for the First IEEE Conference on Sensor Communications and Networking to be held in Santa Clara, CA in 2004. He has served as General Co-Chair for SPIE Opticomm 2003 (Dallas, TX) and for ACM Intl. Workshop on Wireless Sensor Networks and Applications (WSNA) 2003 held on conjunction with ACM MobiCom 2003 at San Diego, CA. He served as Technical Program Co-Chair of SPIE/IEEE/ACM OptiComm conference at Boston, MA in July 2002; and as Workshop Co-Chair for WSNA 2002 held in conjunction with ACM MobiCom 2002 at Atlanta, GA in Sep 2002. He is a Senior Member of IEEE and a member of ACM. Kazem Sohraby received the BS, MS and PhD degrees in electrical engineering and the MBA from the Wharton School, University of Pennsylvania, Philadephia. He is a Professor of the Electrical Engineering Department, College of Engineering, University of Arkansas, Fayetteville. Prior to that, he was with Bell Laboratories, Holmdel, NJ. His areas of interest include computer networking, signaling, switching, performance analysis, and traffic theory. He has over 20 applications and granted patents on computer protocols, wireless and optical systems, circuit and packet switching, and on optical Internet. He has several publications, including a book on The Performance and Control of Computer Communications Networks (Boston, MA: 1995). Dr Sohraby is a Distinguished Lecturer of the IEEE Communications Society, and serves as its President's representative on the Committee on Communications and Information Policy (CCIP). He served on the Education Committee of the IEEE Communications Society, is on the Editorial Boards of several publications, and served as Reviewer and Panelist with the National Science Foundation, the US Army and the Natural Sciences and Engineering Research Council of Canada.  相似文献   

20.
In this paper we consider vertical handoff for enterprise-based dual-mode (DM) cellular/WLAN handsets. When the handset roams out of WLAN coverage, the DM's cellular interface is used to maintain the call by anchoring it through an enterprise PSTN gateway/PBX. Soft handoff can be achieved in this case if the gateway supports basic conference bridging, since a new leg of the call can be established to the conference bridge while the existing media stream path is active. Unfortunately this requires that all intra-enterprise calls be routed through the gateway when the call is established. In this paper we consider a SIP based architecture to perform conferenced dual-mode handoff and propose a much more scalable mechanism for short-delay environments, whereby active calls are handed off into the conference bridge prior to the initiation of the vertical handoff. Results are presented which are taken from a dual-mode handset testbed, from analytic models, and from simulations which characterize the scalability of the proposed mechanism. Mohammed Smadi received the B.Eng and Mgmt and M.A.Sc degrees in Computer Engineering from McMaster University in Hamilton, Ontario, Canada. Mohammed received an NSERC doctoral award in 2005 and is currently a Ph.D. student at the Wireless Networking Group at McMaster University. Terence D. Todd received the B.A.Sc, M.A.Sc and Ph.D. degrees in Electrical Engineering from the University of Waterloo, Waterloo, Ontario, Canada. While at Waterloo he spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). He is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada. Professor Todd spent 1991 on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent 1998 on research leave at The Olivetti and Oracle Research Laboratory in Cambridge, England. While at ORL he worked on the piconet project which was an early embedded wireless network testbed. Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. He is a past Editor of the IEEE/ACM Transactions on Networking and currently holds the NSERC/RIM/CITO Chair on Pico-Cellular Wireless Internet Access Networks. Dr. Todd is a Professional Engineer in the province of Ontario and a member of the IEEE. Vytas Kezys was born in Hamilton, Canada in 1957. He received the B.Eng. degree in Electrical Engineering from McMaster University, Canada, in 1979. From 1979 to 1998, Mr. Kezys was involved in radar and communications research as Principal Research Engineer at the Communications Research Laboratory, McMaster University. While at McMaster, his research activities included array signal processing for low-angle tracking radar, radar signal processing, and smart antennas for wireless communications. Mr. Kezys was founder and President of TalariCom Inc., a start-up company that developed cost effective smart antenna technologies for broadband wireless access applications. Currently, Mr. Kezys is Director of Advanced Products at Research in Motion in Waterloo, Canada. Vahid S. Azhari received his B.S. and M.S. from the Department of Electrical and Computer Engineering, IUST and University of Tehran, Iran, in 2000 and 2003 respectively. His M.S. research focused on designing scheduling algorithms for switch fabrics. He also worked for two years for the Iranian Telecommunication Research Centre on developing software for SDH switches. He is currently pursuing his Ph.D. degree at the Wireless Networking Laboratory, McMaster University, Canada. His main area of research includes handoff management in integrated wireless networks, WLAN deployment techniques, and wireless mesh networks. Dongmei Zhao received the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless cellular networks and integrated cellular and ad hoc networks. Dr. Zhao is a member of the IEEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号