首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fuel》2007,86(12-13):1977-1982
Nowadays, computational combustion (CC) presents complex mathematical models where the fuel physical properties are important parameters. Most research on biodiesel aims at reducing pollutant emissions placing little emphasis on the relation between the fuel physical properties and its internal combustion. In this work it is presented a brief review on the importance of the physical properties and their relation to the internal combustion proposing a method to determine the volumetric proportion of biodiesel which will have efficient combustion in compression engines. The main injection and atomization properties related to the quality of ignition were measured, such as: density, viscosity and surface tension for mineral diesel (B0), biodiesel (B100) and other eleven mixtures BXX. With the proposed method, it was found that mixtures of diesel/soybean ethylic biodiesel from B2 to B30, present satisfactory internal combustion. The method may be used to predict the behavior of BXX proportions from other animal or vegetable sources and even be used as a preliminary or complementary criterion for the biodiesel certification.  相似文献   

2.
D. Yap  J. Karlovsky  A. Megaritis  M.L. Wyszynski  H. Xu 《Fuel》2005,84(18):2372-2379
Propane is available commercially for use in conventional internal combustion engines as an alternative fuel for gasoline. However, its application in the developing homogeneous charge compression ignition (HCCI) engines requires various approaches such as high compression ratios and/or inlet charge heating to achieve auto ignition. The approach documented here utilizes the trapping of internal residual gas (as used before in gasoline controlled auto ignition engines), to lower the thermal requirements for the auto ignition process. In the present work, with a moderate engine compression ratio the achievable engine load range was controlled by the degree of internal trapping of exhaust gas supplemented by inlet charge heating. Increasing the compression ratio decreased the inlet temperature requirements; however, it also resulted in higher pressure rise rates. Varying the inlet valve timing affects the combustion phasing which can help to decrease the maximum pressure rise rates. NOx emissions were characteristically low due to the nature of homogeneous combustion.  相似文献   

3.
Flavio Caresana 《Fuel》2011,90(2):477-485
As the demand for energy rises fossil fuel reserves are depleted daily, increasing the interest in alternative fuels. Biodiesel is one of the best candidates in this class and its use is expected to expand rapidly throughout the world. Numerous researchers have been investigating how biodiesel affects combustion, pollutant formation and exhaust aftertreatment. There is general agreement that its combustion characteristics are similar to those of standard diesel fuel, except for a shorter ignition delay, a higher ignition temperature, and greater ignition pressure and peak heat release. Engine power output is similar with both fuels. As regards emissions, reductions in particulate matter (PM) and carbon monoxide (CO) and increases in nitrogen oxides (NOx) are described with most biodiesel blends. The latter is referred to as the ‘biodiesel NOx effect’. The vast majority of researchers who explored the effect of biodiesel did so in mechanical injection engines. They found that the primary mechanism by which biodiesel increases NOx emissions is by an inadvertent advance in the start of injection timing, caused by a higher modulus and viscosity. However, more recent studies show that NOx emissions also increase in biodiesel-fuelled common rail engines, and that in some cases they actually decrease in engines with mechanically controlled fuel injection systems. This cannot be explained solely by differences in compressibility and remains an open question. The present study provides a contribution to the discussion in this field by describing a new method to evaluate the injection advance in engines with mechanically controlled pumps. The experimental data show that the advances in the start of injection timing, using biodiesel rather than mineral diesel, are smaller than those calculated with standard methods and may even not occur at all, depending on injection system design. In addition, they demonstrate that, contrary to common belief, injection pressure does not always increase when using biodiesel. These data may help explain why some researchers have found similar or even reduced NOx emission also with mechanical injection systems.  相似文献   

4.
Biomass is an often abundant, renewable, low ash and low sulfur fuel. Due to these properties, biofuels are promising alternatives for traditional petroleum-based fuel applications; however, traditional biofuels for internal combustion engines are not cost competitive with gasoline, diesel or fuel oils. One method to reduce the cost of biofuels is to use slurry fuels which have a potential lower cost than liquid biofuels due to high conversion efficiencies. Slurry biofuels, such as a mixture of corn and water, could provide a biofuel alternative for diesel engines, pressurized gasifiers and heating oil applications such as burners or gas turbines. Use of these biomass slurries poses important questions about their stability and suitability for practical applications in internal combustion engines and combustors.This work reports rheology data for stable corn-starch water slurries (CSWS) which used a polyacrylic acid thickener to eliminate settling of the slurry and to provide desirable shear-thinning behavior for most of the compositions evaluated. The effect of shear rate on the viscosity of the CSWS was studied using a BOHLIN-controlled stress (CS) rheometer. The well-known Ostwald—de Waele power law and Sisko models for viscosity fit the data. The effect of corn starch content, thickener content and temperature on the viscosity of CSWS was also studied. The favorable shear thinning properties were observed for starch contents up to 45% starch and should aid pumping, injection and spraying. The lower heating values of the slurries, however, are undesirably low.  相似文献   

5.
Investigations on surrogate fuels for high-octane oxygenated gasolines   总被引:1,自引:0,他引:1  
Gasoline is a complex mixture that possesses a quasi-continuous spectrum of hydrocarbon constituents. Surrogate fuels that decrease the chemical and/or physical complexity of gasoline are used to enhance the understanding of fundamental processes involved in internal combustion engines (ICEs). Computational tools are largely used in ICE development and in performance optimization; however, it is not possible to model full gasoline in kinetic studies because the interactions among the chemical constituents are not fully understood and the kinetics of all gasoline components are not known. Modeling full gasoline with computer simulations is also cost prohibitive. Thus, surrogate mixtures are studied to produce improved models that represent fuel combustion in practical devices such as homogeneous charge compression ignition (HCCI) and spark ignition (SI) engines. Simplified mixtures that represent gasoline performance in commercial engines can be used in investigations on the behavior of fuel components, as well as in fuel development studies. In this study, experimental design was used to investigate surrogate fuels. To this end, SI engine dynamometer tests were conducted, and the performance of a high-octane, oxygenated gasoline was reproduced. This study revealed that mixtures of iso-octane, toluene, n-heptane and ethanol could be used as surrogate fuels for oxygenated gasolines. These mixtures can be used to investigate the effect of individual components on fuel properties and commercial engines performance.  相似文献   

6.
Stanislav Pehan  Marko Kegl 《Fuel》2009,88(6):970-136
This paper deals with the influence of biodiesel on some tribology characteristics of a bus diesel engine with a mechanically controlled fuel injection system. The tests have been performed on a fully equipped engine test bed, on a fuel injection test bed and on a discharge coefficient testing device. The tested fuel was neat biodiesel produced from rapeseed. Attention was focused on the biodiesel influence on the pump plunger surface roughness, on the carbon deposits in the combustion chamber, on the injector and in the injector nozzle hole. The pump plunger surface was analyzed by experimentally determined roughness parameters and by a microscope. The carbon deposits at fuel injector and in the combustion chamber were examined using endoscopic inspection. The deposits in the injector nozzle were investigated indirectly by measuring the nozzle discharge coefficient. Numerical simulation has been performed in order to estimate the influence of the discharge coefficient variation on the computed injection characteristics. The obtained results indicate that biodiesel usage may even improve the pump plunger lubrication conditions. Furthermore, the carbon deposits in the combustion chambers did not vary significantly in quantity but they were noticeably redistributed. Finally, it was found out that the variation of the nozzle discharge coefficient has to be taken into account only if high accuracy of numerical simulation is desired.  相似文献   

7.
Oxygenated fuels increase fuel consumption due to their low enthalpy of combustion; however, their high antiknock index renders them suitable for use in engines with a high compression rate, increasing their thermal yield. This study evaluated the performance of biorenewable oxygenated fuels (ethanol and isoamyl alcohol) and partially renewable fuels (ETBE: ethyl tert-butyl ether, TAEE: tert-amyl ethyl ether and di-TAE: di-tert-amyl ether) with high degree of purity and in mixtures with automotive gasoline, based on tests with Otto cycle engines. Among the oxygenated fuels evaluated here, di-TAE was found to present the best characteristics of performance, both individually and in mixtures with gasoline.  相似文献   

8.
P.K. Sahoo 《Fuel》2009,88(6):994-999
Non-edible filtered Jatropha (Jatropha curcas), Karanja (Pongamia pinnata) and Polanga (Calophyllum inophyllum) oil based mono esters (biodiesel) produced and blended with diesel were tested for their use as substitute fuels of diesel engines. The major objective of the present investigations was to experimentally access the practical applications of biodiesel in a single cylinder diesel engine used in generating sets and the agricultural applications in India. Diesel; neat biodiesel from Jatropha, Karanja and Polanga; and their blends (20 and 50 by v%) were used for conducting combustion tests at varying loads (0, 50 and 100%). The engine combustion parameters such as peak pressure, time of occurrence of peak pressure, heat release rate and ignition delay were computed. Combustion analysis revealed that neat Polanga biodiesel that results in maximum peak cylinder pressure was the optimum fuel blend as far as the peak cylinder pressure was concerned. The ignition delays were consistently shorter for neat Jatropha biodiesel, varying between 5.9° and 4.2° crank angles lower than diesel with the difference increasing with the load. Similarly, ignition delays were shorter for neat Karanja and Polanga biodiesel when compared with diesel.  相似文献   

9.
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained.  相似文献   

10.
In the effort to reduce pollutant emissions from diesel engines various solutions have been proposed, one of which is the use of natural gas as supplement to liquid diesel fuel, with these engines referred to as fumigated, dual fuel, compression ignition engines. One of the main purposes of using natural gas in dual fuel (liquid and gaseous one) combustion systems is to reduce particulate emissions and nitrogen oxides. Natural gas is a clean burning fuel; it possesses a relatively high auto-ignition temperature, which is a serious advantage over other gaseous fuels since then the compression ratio of most conventional direct injection (DI) diesel engines can be maintained high. In the present work, an experimental investigation has been conducted to examine the effects of the total air-fuel ratio on the efficiency and pollutant emissions of a high speed, compression ignition engine located at the authors’ laboratory, where liquid diesel fuel is partially substituted by natural gas in various proportions, with the natural gas fumigated into the intake air. The experimental results disclose the effect of these parameters on brake thermal efficiency, exhaust gas temperature, nitric oxide, carbon monoxide, unburned hydrocarbons and soot emissions, with the beneficial effect of the presence of natural gas being revealed. Given that the experimental measurements cover a wide range of liquid diesel supplementary ratios without any appearance of knocking phenomena, the belief is strengthened that the findings of the present work can be very valuable if opted to apply this technology on existing DI diesel engines.  相似文献   

11.
Ekrem Buyukkaya 《Fuel》2010,89(10):3099-3105
Experimental tests were investigated to evaluate the performance, emission and combustion of a diesel engine using neat rapeseed oil and its blends of 5%, 20% and 70%, and standard diesel fuel separately. The results indicate that the use of biodiesel produces lower smoke opacity (up to 60%), and higher brake specific fuel consumption (BSFC) (up to 11%) compared to diesel fuel. The measured CO emissions of B5 and B100 fuels were found to be 9% and 32% lower than that of the diesel fuel, respectively. The BSFC of biodiesel at the maximum torque and rated power conditions were found to be 8.5% and 8% higher than that of the diesel fuel, respectively. From the combustion analysis, it was found that ignition delay was shorter for neat rapeseed oil and its blends tested compared to that of standard diesel. The combustion characteristics of rapeseed oil and its diesel blends closely followed those of standard diesel.  相似文献   

12.
A technoeconomic study of the production of coal-water fuel slurry for internal combustion engines and thermal power plants was performed. Based on the accumulated experimental data, it was found that, in the calculations of the fuel efficiency of coal-water slurries, the production costs were incorrectly taken into account; this led to a doubtful conclusion that the replacement of petroleum fuel oil and gas by the slurries is technically and economically feasible. Considerable expenses of the development of a technology for the production and transportation of coal-water fuels were not compensated in a number of countries. Conditions for the profitability of the preparation and use of coal-water suspensions in internal combustion engines and at thermal power plants were formulated.  相似文献   

13.
Jianxin Wang  Jianhua Xiao  Shijin Shuai 《Fuel》2009,88(10):2037-700
In order to meet Euro IV emission standards, diesel vehicles are compelled to install exhaust aftertreatment devices, which largely increases the overall cost. This paper explores the possibility to significantly reduce the particulate matter (PM) emissions by new fuel design. Several oxygenated blends were obtained by mixing the biodiesel, ethanol, dimethyl carbonate (DMC), and diesel fuels. The tests were conducted on two heavy-duty diesel engines, both with a high-pressure injection system and a turbocharger. The total PM and its dry soot (DS) and soluble organic fraction (SOF) constituents were analyzed corresponding to their specific fuel physiochemical properties. A blended fuel that contains biodiesel, DMC, and high cetane number diesel fuels was chosen eventually to enable the diesel engines to meet the Euro IV emission regulation. Based on the test results, the basic design principles were derived for the oxygenated blends that not only need the high oxygen content, but also the high cetane number and the low sulfur and low aromatic contents.  相似文献   

14.
An experimental investigation was performed to study the influence of dual-fuel combustion characteristics on the exhaust emissions and combustion performance in a diesel engine fueled with biogas-biodiesel dual-fuel. In this work, the combustion pressure and the rate of heat release were evaluated under various conditions in order to analyze the combustion and emission characteristics for single-fuel (diesel and biodiesel) and dual-fuel (biogas-diesel and biogas-biodiesel) combustion modes in a diesel engine. In addition, to compare the engine performances and exhaust emission characteristics with combustion mode, fuel consumption, exhaust gas temperature, efficiency, and exhaust emissions were also investigated under various test conditions. For the dual-fuel system, the intake system of the test engine was modified to convert into biogas and biodiesel of a dual-fueled combustion engine. Biogas was injected during the intake process by two electronically controlled gas injectors, which were installed in the intake pipe.The results of this study showed that the combustion characteristics of single-fuel combustion for biodiesel and diesel indicated the similar patterns at various engine loads. In dual-fuel mode, the peak pressure and heat release for biogas-biodiesel were slightly lower compared to biogas-diesel at low load. At 60% load, biogas-biodiesel combustion exhibited the slightly higher peak pressure, rate of heat release (ROHR) and indicated mean effective pressure (IMEP) than those of diesel. Also, the ignition delay for biogas-biodiesel indicated shortened trends compared to ULSD dual-fueling due to the higher cetane number (CN) of biodiesel. Significantly lower NOx emissions were emitted under dual-fuel operation for both cases of pilot fuels compared to single-fuel mode at all engine load conditions. Also, biogas-biodiesel provided superior performance in reductions of soot emissions due to the absence of aromatics, the low sulfur, and oxygen contents for biodiesel.  相似文献   

15.
Energy demand, decreasing fossil fuel reserves, and health-related issues about pollutants have led researchers to search for renewable alternative fuels to either partially or fully replace fossil fuels. Among many alternative fuels, biodiesel became one of the most popular choices due to similar properties to that of conventional diesel. Biodiesel produces slightly lower brake thermal efficiency compared to that of conventional biodiesel, but has an advantage of reduced emissions of CO2, CO, HC, and smoke. However, biodiesel shows higher NOx emission which, when used in increased biodiesel market, may become a serious problem. Various strategies were attempted by different researcher to reduce NOx emissions. In this paper, various strategies, adapted for reducing NOx emissions of biodiesel fuel used in diesel engines for automobile applications, are reviewed and discussed. The strategies are grouped into three major groups, namely combustion treatments, exhaust after-treatments, and fuel treatments. Among various strategies discussed, fuel treatments, such as low temperature combustion, mixing fuel additives and reformulating fuel composition, reduce NOx emission without compromising other emission and performance characteristics and they seem to be promising for future biodiesel fuel.  相似文献   

16.
S. Szwaja  J.D. Naber 《Fuel》2010,89(7):1573-1582
Alcohols, because of their potential to be produced from renewable sources and because of their high quality characteristics for spark-ignition (SI) engines, are considered quality fuels which can be blended with fossil-based gasoline for use in internal combustion engines. They enable the transformation of our energy basis in transportation to reduce dependence on fossil fuels as an energy source for vehicles. The research presented in this work is focused on applying n-butanol as a blending agent additive to gasoline to reduce the fossil part in the fuel mixture and in this way to reduce life cycle CO2 emissions. The impact on combustion processes in a spark-ignited internal combustion engine is also detailed. Blends of n-butanol to gasoline with ratios of 0%, 20%, and 60% in addition to near n-butanol have been studied in a single cylinder cooperative fuels research engine (CFR) SI engine with variable compression ratio manufactured by Waukesha Engine Company. The engine is modified to provide air control and port fuel injection. Engine control and monitoring was performed using a target-based rapid-prototyping system with electronic sensors and actuators installed on the engine [1]. A real-time combustion analysis system was applied for data acquisition and online analysis of combustion quantities. Tests were performed under stoichiometric air-to-fuel ratios, fixed engine torque, and compression ratios of 8:1 and 10:1 with spark timing sweeps from 18° to 4° before top dead center (BTDC). On the basis of the experimental data, combustion characteristics for these fuels have been determined as follows: mass fraction burned (MFB) profile, rate of MFB, combustion duration and location of 50% MFB. Analysis of these data gives conclusions about combustion phasing for optimal spark timing for maximum break torque (MBT) and normalized rate for heat release. Additionally, susceptibility of 20% and 60% butanol-gasoline blends on combustion knock was investigated. Simultaneously, comparison between these fuels and pure gasoline in the above areas was investigated. Finally, on the basis of these conclusions, characteristic of these fuel blends as substitutes of gasoline for a series production engine were discussed.  相似文献   

17.
M. Gumus 《Fuel》2010,89(10):2802-2814
In the present study, hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain biodiesel and a comprehensive experimental investigation of combustion (cylinder gas pressure, rate of pressure rise, ignition delay) and heat release (rate of heat release, cumulative heat release, combustion duration and center of heat release) parameters of a direct injection compression ignition engine running with biodiesel and its blends with diesel fuel was carried out. Experiment parameters included the percentage of biodiesel in the blend, engine load, injection timing, injection pressure, and compression ratio. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel can be used in the engine without any modification and undesirable combustion and heat release characteristics were not observed. The modifications such as increasing of injection timing, compression ratio, and injection pressure provided significant improvement in combustion and heat release characteristics.  相似文献   

18.
Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emissions from combustion equipment. Because cultivated land is too limited to grow seed-oil plants sufficient to produce both food and biodiesel, non-land-based oleaginous materials have been considered important sources for the production of the latter. In this study, the discarded parts of mixed marine fish species were used as the raw material to produce biodiesel. Marine fish oil was extracted from the discarded parts of mixed marine fish and refined through a series of pretreatment processes. The refined marine fish oil was then transesterified with methyl alcohol to produce biodiesel, which was used thereafter as engine fuel to investigate its engine performance and emission characteristics. The experimental results show that, compared with commercial biodiesel from waste cooking oil, marine fish-oil biodiesel has a larger gross heating value, elemental carbon and hydrogen content, cetane index, exhaust gas temperature, brake fuel conversion efficiency, NOx and O2 emissions, and black smoke opacity and a lower elemental oxygen content, fuel consumption rate, brake-specific fuel consumption rate, equivalence ratio, and CO emission. Compared with ASTM No. 2D diesel, both marine fish-oil and waste cooking-oil biodiesels appear to have a lower gross heating value, cetane index, exhaust gas temperature, equivalence ratio, black smoke opacity, elemental carbon content, and CO emission and a higher fuel consumption rate and elemental oxygen content.  相似文献   

19.
《Fuel》2007,86(12-13):1765-1771
The objective of this study is to compare the engine performance and emission results of biodiesel derived from used cooking oil when applied in different proportions in outboard engines. Results revealed that the use of biodiesel resulted in lower emissions of CO (up to 12%) with an increase in emissions of NOx (up to 20%, except in one case which presented a slight reduction). Biodiesel also presented a slight increase in specific fuel consumption (lower than 11.4%) which may be acceptable considering the reduction in exhaust emissions. The experimental results proved that biodiesel alone or blended biodiesel can be used in compression ignition outboard engines, thereby providing a viable alternative to diesel. Special attention should be paid to the use of biodiesel in boats operating on lakes and rivers and in sheltered bays, which are more vulnerable to pollution.  相似文献   

20.
Biodiesel, which is produced from vegetable oils, animal fats or used cooking oils, can be used as an alternative fuel for diesel engines. The high oxygen content of biodiesel not only enhances its burning efficiency, but also generally promotes the formation of more nitrogen oxides (NOx) during the burning process. Fuel emulsification and the use of NOx inhibitor agents in fuel are considered to be effective in reducing NOx emissions. In the study reported herein, soybean oil was used as raw oil to produce biodiesel by transesterification reaction accompanied by peroxidation to further improve the fuel properties of the biodiesel, which was water washed and distilled to remove un-reacted methanol, water, and other impurities. The biodiesel product was then emulsified with distilled water and emulsifying surfactant by a high-speed mechanical homogenizer to produce a three-phase oil-droplets-in-water-droplets-in-oil (i.e. O/W/O) biodiesel emulsion and an O/W/O emulsion that contained aqueous ammonia, which is a NOx inhibitor agent. A four-stroke diesel engine, in combination with an eddy-current dynamometer, was used to investigate the engine performance and emission characteristics of the biodiesel, the O/W/O biodiesel emulsion, the O/W/O biodiesel emulsion that contained aqueous ammonia, and ASTM No. 2D diesel. The experimental results show that the O/W/O emulsion has the lowest carbon dioxide (CO2) emissions, exhaust gas temperature, and heating value, and the largest brake specific fuel consumption, fuel consumption rate, and kinematic viscosity of the four tested fuels. The increase of engine speed causes the increase of equivalence ratio, exhaust gas temperature, CO2 emissions, fuel consumption rate, and brake specific fuel consumption, but a decrease of NOx emissions. Moreover, the existence of aqueous ammonia in the O/W/O biodiesel emulsion curtails NOx formation, thus resulting in the lowest NOx emissions among the four tested fuels in burning the O/W/O biodiesel emulsion that contained aqueous ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号