首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
基于语义距离的K-最近邻分类方法   总被引:12,自引:0,他引:12       下载免费PDF全文
杨立  左春  王裕国 《软件学报》2005,16(12):2054-2062
最近邻分类方法中对距离机制的研究大都集中在根据何种计算方法将不同属性取值的差异集中起来,而未考虑到同一属性间取值的语义差异所带来的影响;而且传统算法的分类准确率对于不同抽象层次描述的数据集带来的数据不完整性相当敏感.针对这两个问题,提出一种基于语义距离的最近邻分类方法SDkNN(semantic distance based k-nearest neighbor).该方法分析了同一属性内取值的语义差异,说明了如何基于领域本体计算语义距离,并将其应用到kNN算法中.经过在UCI数据集以及实际应用数据集中验证,SDkNN的整体性能要优于传统方法,在数据不完整的情况下效果更为明显,实践证明,SDkNN有较好的应用价值.  相似文献   

2.
田枫  沈旭昆 《软件学报》2013,24(10):2405-2418
真实环境下数据集中广泛存在着标签噪声问题,数据集的弱标签性已严重阻碍了图像语义标注的实用化进程.针对弱标签数据集中的标签不准确、不完整和语义分布失衡现象,提出了一种适用于弱标签数据集的图像语义标注方法.首先,在视觉内容与标签语义的一致性约束、标签相关性约束和语义稀疏性约束下,通过直推式学习填充样本标签,构建样本的近似语义平衡邻域.鉴于邻域中存在噪声干扰,通过多标签语义嵌入的邻域最大边际学习获得距离测度和图像语义的一致性,使得近邻处于同一语义子空间.然后,以近邻为局部坐标基,通过邻域非负稀疏编码获得目标图像和近邻的部分相关性,并构建局部语义一致邻域.以邻域内的语义近邻为指导并结合语境相关信息,进行迭代式降噪与标签预测.实验结果表明了方法的有效性.  相似文献   

3.
针对有效利用图像底层视觉特征和图像语义特征进行图像标注,提出一种改进的AP(Affinity Propagation)聚类标注模型。首先采用半监督距离测度学习算法,融合图像语义信息,训练得到新的距离测度。然后使用新的距离测度对每一类图像进行AP聚类,生成各类图像的聚类中心,计算待标注图像到各类图像聚类中心的平均距离,确定待标注图像类别。最后计算待标注图像到类内各个聚类中心的距离,确定待标注图像类内类别,统计该类别下图像的标注词,作为待标注图像的标注词。在Corel5K和NUS-WIDE数据集上进行了实验,经验证,该方法有效提高了标注精度。  相似文献   

4.
图像语义的标注需要解决图像高层语义和底层特征间存在的语义鸿沟。采用基于图像分割、并结合图像区域特征抽取的方法,建立图像区域语义与底层特征间的关联,采用基于距离的分类算法,计算区域特征间的相似性,并对具有相同或相近特征的区域的语义采用关联关键字的方法进行区分,用关键字实现图像语义的自动标注。  相似文献   

5.
结合编辑距离和Google距离的语义标注方法*   总被引:1,自引:0,他引:1  
提出了一种在领域本体指导下对网页进行语义标注的方法。该方法利用编辑距离和Google距离从词语的语法和语义两方面综合度量词汇与本体概念之间的语义相关度,从而在网页与本体之间建立映射关系。此外,对网页进行语义标注后,利用标注结果对本体进行有效扩充,使本体更趋于领域化。实验结果表明该方法是行之有效的。  相似文献   

6.
孙君顶  杜娟 《计算机系统应用》2012,21(7):258-261,257
近年来,随着对基于内容图像检索技术研究的深入,图像自动语义标注已成为了该领域的研究热点。针对目前广泛研究的图像语义标注技术,从其分类、关键技术、存在问题及发展方向进行了进行了论述,以期为从事该方向研究的人员提供一定的借鉴意义和参考价值。  相似文献   

7.
融合语义主题的图像自动标注   总被引:7,自引:0,他引:7       下载免费PDF全文
由于语义鸿沟的存在,图像自动标注已成为一个重要课题.在概率潜语义分析的基础上,提出了一种融合语义主题的方法以进行图像的标注和检索.首先,为了更准确地建模训练数据,将每幅图像的视觉特征表示为一个视觉\"词袋\";然后设计一个概率模型分别从视觉模态和文本模态中捕获潜在语义主题,并提出一种自适应的不对称学习方法融合两种语义主题.对于每个图像文档,它在各个模态上的主题分布通过加权进行融合,而权值由该文档的视觉词分布的熵值来确定.于是,融合之后的概率模型适当地关联了视觉模态和文本模态的信息,因此能够很好地预测未知图像的语义标注.在一个通用的Corel图像数据集上,将提出的方法与几种前沿的图像标注方法进行了比较.实验结果表明,该方法具有更好的标注和检索性能.  相似文献   

8.
作为图像检索技术中重要环节的语义标注,其标注的准确度决定着最终检索效果.介绍了语义标注的基础(即语义层次模型),总结了语义标注常用的方法:人工手动标注和计算机标注系统,并且分析了两种方法的具体实现以及优缺点.  相似文献   

9.
基于图像分割的语义标注方法   总被引:1,自引:0,他引:1  
彭晏飞  孙鲁 《计算机应用》2012,32(6):1548-1551
为有效解决图像检索中存在的“语义鸿沟”问题,提出了一种新的语义标注方法。该方法以图像分割为基础,在训练阶段构建图像字典,通过对图像单元颜色、纹理、小波轮廓的分析和描述形成一种结合小波轮廓比对和概率统计的二阶段标注模型,模型针对不同类别的图像分阶段采用相应的标注方法。经实验,应用该模型进行图像检索查全率和查准率都有明显提高,其中查准率最高可提升23.6%,证明该方法更接近人对图像内容的理解,具有良好的标注效果和检索性能。  相似文献   

10.
自动图像标注是一项具有挑战性的工作,它对于图像分析理解和图像检索都有着重要的意义.在自动图像标注领域,通过对已标注图像集的学习,建立语义概念空间与视觉特征空间之间的关系模型,并用这个模型对未标注的图像集进行标注.由于低高级语义之间错综复杂的对应关系,使目前自动图像标注的精度仍然较低.而在场景约束条件下可以简化标注与视觉特征之间的映射关系,提高自动标注的可靠性.因此提出一种基于场景语义树的图像标注方法.首先对用于学习的标注图像进行自动的语义场景聚类,对每个场景语义类别生成视觉场景空间,然后对每个场景空间建立相应的语义树.对待标注图像,确定其语义类别后,通过相应的场景语义树,获得图像的最终标注.在Corel5K图像集上,获得了优于TM(translation model)、CMRM(cross media relevance model)、CRM(continous-space relevance model)、PLSA-GMM(概率潜在语义分析-高期混合模型)等模型的标注结果.  相似文献   

11.
12.
This paper proposes a new methodology for computing Hausdorff distances between sets of points in a robust way. In a first step, robust nearest neighbor distance distributions between the two sets of points are obtained by considering reliability measures in the computations through a Monte Carlo scheme. In a second step, the computed distributions are operated using random variables algebra in order to obtain probability distributions of the average, minimum or maximum distances. In the last step, different statistics are computed from these distributions. A statistical test of significance, the nearest neighbor index, in addition to the newly proposed divergence and clustering indices are used to compare the computed measurements with respect to values obtained by chance. Results on synthetic and real data show that the proposed method is more robust than the standard Hausdorff distance. In addition, unlike previously proposed methods based on thresholding, it is appropriate for problems that can be modeled through point processes.  相似文献   

13.
The RELIEF algorithm is a popular approach for feature weighting. Many extensions of the RELIEF algorithm are developed, and I-RELIEF is one of the famous extensions. In this paper, I-RELIEF is generalized for supervised distance metric learning to yield a Mahananobis distance function. The proposed approach is justified by showing that the objective function of the generalized I-RELIEF is closely related to the expected leave-one-out nearest-neighbor classification rate. In addition, the relationships among the generalized I-RELIEF, the neighbourhood components analysis, and graph embedding are also pointed out. Experimental results on various data sets all demonstrate the superiority of the proposed approach.  相似文献   

14.
Fisher鉴别特征的最近邻凸包分类   总被引:2,自引:0,他引:2  
基于Fisher准则的特征提取方法是模式识别技术的重要分支,其中,Foley-Sammon变换和具有统计不相关性的最佳鉴别变换是这一技术典型代表,本文将它们与一种新型分类器一最近邻凸包分类器相结合,从而实现Fisher鉴别特征的有效分类。最近邻凸包分类器是一类以测试样本点到各类训练集生成类别凸包的距离为分类判别依据的模式分类新方法,具有非线性性,无参性,多类别适用性等特点。实验证实了本文方法的有效性。  相似文献   

15.
The Nearest Neighbor rule is one of the most successful classifiers in machine learning. However, it is very sensitive to noisy, redundant and irrelevant features, which may cause its performance to deteriorate. Feature weighting methods try to overcome this problem by incorporating weights into the similarity function to increase or reduce the importance of each feature, according to how they behave in the classification task. This paper proposes a new feature weighting classifier, in which the computation of the weights is based on a novel idea combining imputation methods – used to estimate a new distribution of values for each feature based on the rest of the data – and the Kolmogorov–Smirnov nonparametric statistical test to measure the changes between the original and imputed distribution of values. This proposal is compared with classic and recent feature weighting methods. The experimental results show that our feature weighting scheme is very resilient to the choice of imputation method and is an effective way of improving the performance of the Nearest Neighbor classifier, outperforming the rest of the classifiers considered in the comparisons.  相似文献   

16.
基于综合特征图像检索技术研究   总被引:11,自引:0,他引:11  
图像数据库应用日益广泛,如何高效、准确地进行图像的检索成为一项重要的研究领域。传统的图像检索主要依赖颜色、纹理、形状、空间关系等单一视觉特征,检索效果往往不够理想。针对这一实际问题,提出一种新的图像检索方法,该方法以综合特征为检索基础,通过获得图像的归一化综合特征,并将其作为图像相似性的衡量依据。实验证明,利用综合特征进行图像检索具有很好的效果。  相似文献   

17.
有监督的距离度量学习算法研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
沈媛媛  严严  王菡子 《自动化学报》2014,40(12):2673-2686
近年来, 距离度量学习已成为计算机视觉和模式识别等领域最为活跃的研究课题之一. 如何利用训练数据学习得到有效的距离度量来衡量目标之间的相似性是该类研究的关键问题. 针对有监督的距离度量学习问题,目前已提出了大量的研究算法. 结合近年已发表相关文献对有监督的距离度量学习算法进行了详细的介绍和讨论. 根据样本信息利用方式的不同, 将其划分成基于成对约束和非成对约束的距离度量学习算法, 重点介绍了一些常用的典型算法, 分析了每种算法的原理和优缺点, 最后是未来发展方向和趋势的展望.  相似文献   

18.
    
Tensor decompositions have many application areas in several domains where one key application is revealing relational structure between multiple dimensions simultaneously and thus enabling the compression of relational data. In this paper, we propose the Discriminative Tensor Decomposition with Large Margin (shortly, Large Margin Tensor Decomposition, LMTD), which can be viewed as a tensor-to-tensor projection operation. It is a novel method for calculating the mutual projection matrices that map the tensors into a lower dimensional space such that the nearest neighbor classification accuracy is improved. The LMTD aims finding the mutual discriminative projection matrices which minimize the misclassification rate by minimizing the Frobenius distance between the same class instances (in-class neighbors) and maximizing the distance between different class instances (impostor neighbors). Two versions of LMTD are proposed, where the nearest neighbor classification error is computed in the feature (latent) or input (observations) space. We evaluate the proposed models on real data sets and provide a comparison study with alternative decomposition methods in the literature in terms of their classification accuracy and mean average precision.  相似文献   

19.
Most CBIR (content based image retrieval) systems use relevance feedback as a mechanism to improve retrieval results. NN (nearest neighbor) approaches provide an efficient method to compute relevance scores, by using estimated densities of relevant and non-relevant samples in a particular feature space. In this paper, particularities of the CBIR problem are exploited to propose an improved relevance feedback algorithm based on the NN approach. The resulting method has been tested in a number of different situations and compared to the standard NN approach and other existing relevance feedback mechanisms. Experimental results evidence significant improvements in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号